Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Curr Microbiol ; 81(6): 161, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700667

RESUMO

In the wake of rapid industrialization and burgeoning transportation networks, the escalating demand for fossil fuels has accelerated the depletion of finite energy reservoirs, necessitating urgent exploration of sustainable alternatives. To address this, current research is focusing on renewable fuels like second-generation bioethanol from agricultural waste such as sugarcane bagasse. This approach not only circumvents the contentious issue of food-fuel conflicts associated with biofuels but also tackles agricultural waste management. In the present study indigenous yeast strain, Clavispora lusitaniae QG1 (MN592676), was isolated from rotten grapes to ferment xylose sugars present in the hemicellulose content of sugarcane bagasse. To liberate the xylose sugars, dilute acid pretreatment was performed. The highest reducing sugars yield was 1.2% obtained at a temperature of 121 °C for 15 min, a solid-to-liquid ratio of 1:25 (% w/v), and an acid concentration of 1% dilute acid H2SO4 that was significantly higher (P < 0.001) yield obtained under similar conditions at 100 °C for 1 h. The isolated strain was statistically optimized for fermentation process by Plackett-Burman design to achieve the highest ethanol yield. Liberated xylose sugars were completely utilized by Clavispora lusitaniae QG1 (MN592676) and gave 100% ethanol yield. This study optimizes both fermentation process and pretreatment of sugarcane bagasse to maximize bioethanol yield and demonstrates the ability of isolated strain to effectively utilize xylose as a carbon source. The desirable characteristics depicted by strain Clavispora lusitaniae shows its promising utilization in management of industrial waste like sugarcane bagasse by its conversion into renewable biofuels like bioethanol.


Assuntos
Biocombustíveis , Celulose , Etanol , Fermentação , Saccharum , Saccharum/metabolismo , Etanol/metabolismo , Celulose/metabolismo , Gerenciamento de Resíduos/métodos , Agricultura , Xilose/metabolismo , Vitis/microbiologia , Hypocreales/metabolismo
2.
Water Sci Technol ; 87(3): 660-671, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789710

RESUMO

The anaerobic baffled reactor (ABR) is a promising solution for decentralized wastewater treatment due to its low operation cost as compared to the activated sludge process, but it requires comparatively higher hydraulic retention time (HRT). This ultimately increases land requirement, capital and construction cost of treatment plant. This study investigates performance of ABR using polyvinyl chloride (PVC) corrugated pipe as carrier media to improve biomass retention capacity and treatment performance of reactor with the aim to reduce HRT. Comparative performance of two ABRs with and without carrier media was analyzed under mesophilic conditions (35 ± 1 °C) for organics and total suspended solids (TSS) removal at HRTs of 24, 18, 12, 8, 6 and 4 h. Results showed that at HRTs of 24-08 h, the organics removal performance of the carrier anaerobic baffled reactor (CABR) was better than ABR and was in the range of 77-81% for CABR as compared to 64-70% for ABR. However, on further decrease in HRT to 6 h, CABR sustained the treatment with organics removal of 80%, while ABR performance reduced to 58%, creating a performance difference of 38%. Average total suspended solids (TSS) removal was in the range of 76-83% at all HRTs for both reactors. Therefore, this study identified CABR with PVC carrier media as an effective low-HRT reactor for organics and SS removal with less land area requirement.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Reatores Biológicos , Esgotos
3.
Curr Microbiol ; 79(4): 105, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35157141

RESUMO

Curli fimbriae, a virulent factor of the Avian Pathogenic Escherichia coli (APEC), is responsible for adhesion, biofilm formation, and colonization of pathogen. Major curli fimbriae protein is encoded by csgA gene. APEC is one of the leading causes of colibacillosis in poultry flocks and due to excessive use of antibiotics and vaccines in poultry, the emergence of various multi-drug resistant (MDR) bacterial strainsare is frequently reported. The growing concern of MDR bacterial strains necessitate novel antibacterial approaches to combat colibacillosis in poultry. RNA-based gene silencing is a very specific and robust strategy to target specific bacterial factors involved in pathogenicity and virulence. In this study, a phagemid-mediated sRNA expression system to target a vital gene, csgA, is employed. This comprises an M13 phagemid harboring a sRNA expression cassette and a pre-designed GUIDE sequences for the csgA target gene. To target the csgA gene at the mRNA level, a GUIDE sequence was computationally designed for pre-designed sRNA expression cassette. Online web tools were used to predict the binding energy, secondary structure, and off-target binding potential of the sRNA to optimize its expression. Results showed that the designed sRNA has a binding energy of - 29.60 kcal/mol with zero off-targets. After expression of the sRNA in the APEC cells, Ì´ 45% reduction in the csgA level was observed via RT-PCR in the CS-APEC-O1 strains compared to the wt-APEC-O1. Similarly, the biofilm forming ability decreased by 40% in the CS-APEC-O1 strains. The swarming motility and hemagglutination efficiency were not affected by the sRNA expression. Future studies investigating the in vivo efficiency of M13 phagemid delivery are required to evaluate its candidacy in phage therapy.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Galinhas , Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Virulência/genética , Fatores de Virulência
4.
Parasitol Res ; 121(3): 991-998, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35076777

RESUMO

This study was conducted to explore the frequency of positivity of cutaneous leishmaniasis (CL) in the tribal district Bajaur located near the Pak-Afghan border. The present study was conducted at the Leishmaniasis Center of Headquarter Hospital Khar District Bajaur, Pakistan. In total, 646 patients were recruited and included in the study after ethical approval and consent from the patients. CL was confirmed by taking blood samples from the sides of the lesion and observing them under a microscope using Giemsa staining. Information about demographic factors was collected from the study participants with a questionnaire and analyzed by SPSS. It was found that 73.8% of suspected patients were positive and 26.2% were negative for CL. There were 51.9% male and 48.1% female patients. The most frequently affected site was the face (42.6%), and most of the patients (85.8%) had only one lesion. The positivity of CL was higher among those under age 15 years. The area of most positivity, with 45.2% of the cases, was Tehsil Mamund. Most of the patients (46.6%) lived in stone houses, with 98.6% of patients having domestic animals in their houses. Approximately 198 patients were treated with intramuscular and intralesional injections of meglumine antimoniate, and their weekly follow-up revealed that 48% of patients recovered, while the remaining patients left the course of treatment at different stages of therapy. The positivity of CL is high in this area and is confirmed by the detection of Leishmania amastigotes in the blood collected from their lesions. Socioeconomic factors are the main underlying causes of the rapid spread of this disease and meglumine antimoniate is an effective drug.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Compostos Organometálicos , Adolescente , Animais , Antiprotozoários/uso terapêutico , Feminino , Seguimentos , Humanos , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/epidemiologia , Masculino , Meglumina/uso terapêutico , Compostos Organometálicos/uso terapêutico , Paquistão/epidemiologia
5.
Water Sci Technol ; 85(1): 420-432, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35050893

RESUMO

Lignin is a major by-product of pulp and paper industries, and is resistant to depolymerization due to its heterogeneous structure. Degradation of lignin can be achieved by the use of potential lignin-degrading bacteria. The current study was designed to evaluate the degradation efficiency of newly isolated Bacillus altitudinis SL7 from pulp and paper mill effluent. The degradation efficiency of B. altitudinis SL7 was determined by color reduction, lignin content, and ligninolytic activity from degradation medium supplemented with alkali lignin (3 g/L). B. altitudinis SL7 reduced color and lignin content by 26 and 44%, respectively, on the 5th day of incubation, as evident from the maximum laccase activity. Optimum degradation was observed at 40 °C and pH 8.0. FT-IR spectroscopy and GC-MS analysis confirmed lignin degradation by emergence of the new peaks and identification of low-molecular-weight compounds in treated samples. The identified compounds such as vanillin, 2-methyoxyhenol, 3-methyl phenol, oxalic acid and ferulic acid suggested the degradation of coniferyl and sinapyl groups of lignin. Degradation efficiency of B. altitudinis SL7 towards high lignin concentration under alkaline pH indicated the potential application of this isolate in biological treatment of the lignin-containing effluents.


Assuntos
Resíduos Industriais , Lignina , Bacillus , Biodegradação Ambiental , Papel , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Int Microbiol ; 24(2): 183-196, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33404934

RESUMO

High-altitude cold habitats of the Karakoram are rarely explored for their bacterial community characterization and metabolite productions. In the present study, bacterial communities in ice, water, and sediments of Batura Glacier were investigated using culture-dependent and culture-independent methods. Twenty-seven cold-adapted bacterial strains (mostly psychrotrophic) were isolated using R2A, Tryptic Soy Agar (TSA), and Luria-Bertani (LB) media, at 4 °C and 15 °C. Most of the isolates exhibited growth at a wide range of temperature (4-35 °C), pH (5-12), and salinity (1-6%). Among the bacterial isolates, 52% were identified as Gram-positive and the remaining 48% represented as Gram-negative. The results of phylogenetic analysis indicated that all the culturable bacteria belonged to 3 major phylogenetic groups, i.e., Actinobacteria (48%), Bacteroidetes (26%), and Proteobacteria (22%), while Flavobacterium (26%), Arthrobacter (22%), and Pseudomonas (19%) were represented as the dominant genera. Similarly, Illumina amplicon sequencing of 16S rRNA genes after PCR amplification of DNA from the whole community revealed dominance of the same phylogenetic groups, Proteobacteria, Actinobacteria, and Bacteroidetes, while Arthrobacter, Mycoplana, Ochrobactrum, Kaistobacter, Janthinobacterium, and Flavobacterium were found as the dominant genera. Among the culturable isolates, 70% demonstrated activity for cellulases, 48% lipases, 41% proteases, 41% DNases, and only 7% for amylases. Most of the glacial isolates demonstrated antimicrobial activity against other microorganisms including the multiple-drug-resistant strains of Candida albicans, Klebsiella pneumoniae, Acinetobacter sp., and Bacillus sp. 67% of Gram-negative while 46% of Gram-positive glacial bacteria were resistant to trimethoprim/sulfamethoxazole. Resistance against methicillin and vancomycin among the Gram-positive isolates was 23% and 15%, respectively, while 11% of the Gram-negative isolates exhibited resistance against both colistin sulfate and nalidixic acid.


Assuntos
Bactérias/isolamento & purificação , Camada de Gelo/microbiologia , Microbiota , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Paquistão , Filogenia , RNA Ribossômico 16S/genética
7.
Water Sci Technol ; 83(9): 2287-2295, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33989193

RESUMO

The environmental release of mercury is continuously increasing with high degree of mobility, transformation and amplified toxicity. Improving remediation strategies is becoming increasingly important to achieve more stringent environmental safety standards. This study develops a laboratory-scale reactor for bioremediation of aqueous mercury using a biofilm-producing bacterial strain, KBH10, isolated from mercury-polluted soil. The strain was found resistant to 80 mg/L of HgCl2 and identified as Bacillus nealsonii via 16S rRNA gene sequence analysis. The strain KBH10 was characterized for optimum growth parameters and its mercury biotransformation potential was validated through mercuric reductase assay. A packed-bed column bioreactor was designed for biofilm-mediated mercury removal from artificially contaminated water and residual mercury was estimated. Strain KBH10 could grow at a range of temperature (20-50 °C) and pH (6.0-9.0) with optimum temperature established at 30 °C and pH 7.0. The optimum mercuric reductase activity (77.8 ± 1.7 U/mg) was reported at 30 °C and was stable at a temperature range of 20-50 °C. The residual mercury analysis of artificially contaminated water indicated 60.6 ± 1.5% reduction in mercury content within 5 h of exposure. This regenerative process of biofilm-mediated mercury removal in a packed-bed column bioreactor can provide new insight into its potential use in mercury bioremediation.


Assuntos
Mercúrio , Bacillus , Biodegradação Ambiental , Laboratórios , RNA Ribossômico 16S/genética , Água
8.
Curr Microbiol ; 77(7): 1245-1253, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32125445

RESUMO

A radio-resistant bacterium labeled as strain TMC-6 was isolated from Thal desert, Pakistan and identified through 16S rRNA gene sequencing as Bacillus indicus strain TMC-6 (MN721293). The isolate was found to be resistant to UV radiation dose of 6.780 × 103 J/m2 and showed 50% survivability to mitomycin C (6 µg/ml) and H2O2 (30 mM). The bacterium showed yellowish orange coloration when grown on tryptone yeast glucose (TGY) medium. The cellular metabolite was extracted in methanol and purified through solid phase extraction with C18 column cartridge. The compound was characterized through UV/Visible spectrophotometry, Fourier Transform Infra-Red (FT-IR) spectroscopy and Liquid Chromatography Mass Spectrometry (LC-MS). The LC-MS analysis of the compound revealed a molar mass of 769 [m/z]- that matched the chemical formula C34H42O20 and identified as a glycosylated flavonoid xanthorhamnin. The compound showed significant antioxidant (77.05%) and metal chelation (79.80%) activities. Xanthorhamnin showed promising oxidative damage inhibitory actions in bovine serum albumin (65.32%) and mice liver lipids (71.61%) and prevented DNA strand breaks from oxidative stress. Cytotoxicity in brine shrimp larvae was observed when compared with mitomycin C indicating its effect toward cancerous cells. These findings concluded that xanthorhamnin from radio-resistant Bacillus indicus strain TMC-6 has high antioxidant, radioprotective, and antitumor properties against UV-mediated oxidative damages.


Assuntos
Antioxidantes , Bacillus , Quercetina , Protetores contra Radiação , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Artemia/efeitos dos fármacos , Bacillus/química , Bacillus/fisiologia , Glicosilação , Larva/efeitos dos fármacos , Fígado/química , Fígado/efeitos dos fármacos , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Quercetina/análogos & derivados , Quercetina/química , Quercetina/farmacologia , Quercetina/toxicidade , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Protetores contra Radiação/toxicidade , Microbiologia do Solo , Testes de Toxicidade , Raios Ultravioleta
9.
J Basic Microbiol ; 60(7): 600-612, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32363591

RESUMO

Industrial applications require enzymes to be highly stable and economically viable in terms of reusability. Enzyme immobilization is an exciting alternative to improve the stability of enzymatic processes. Immobilization of ß-1,4-xylanase produced by Bacillus licheniformis S3 is performed by using two polymer supports (agar-agar and calcium alginate). The maximum enzyme immobilization yield was achieved at a concentration of 3% agar, whereas a combination of sodium alginate, 4%, and calcium chloride, 0.3 M, was used for the formation of immobilized beads. The immobilization process increased the optimum reaction time from 10 min to 35 and 40 min for agar and calcium alginate, respectively, and the incubation temperature increased from 55°C to 60°C for agar, but it remained unchanged for calcium alginate. The pH profile of free and immobilized xylanase was quite similar in both cases. Both the techniques altered the kinetic parameters of immobilized ß-1,4-xylanase as compared with the free enzyme. The diffusion limit of high molecular weight xylan caused a decline in Vmax of the immobilized enzyme, whereas there was an increase in the Km value. However, calcium alginate-immobilized enzyme displayed broad thermal stability as compared with agar-agar-immobilized enzyme and retained 57.1% of its initial activity at 80°C up to 150 min. Biotechnological characterization showed that the reusability of enzymes was the most striking finding, particularly of immobilized xylanase using agar-agar as immobilization carrier, which after six cycles retained 23% activity.


Assuntos
Bacillus licheniformis/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Enzimas Imobilizadas/metabolismo , Xilanos/metabolismo , Ágar/química , Alginatos/química , Enzimas Imobilizadas/química
10.
Mol Biol Rep ; 46(4): 4565-4580, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31243724

RESUMO

Polysaccharides including resistant starch are categorized as dietary fiber and are used as an important prebiotic. Similar to soluble fibers, resistant starch also has a number of physiological effects that have been shown to be beneficial for health. Starch hydrolyzing enzymes, most importantly amylases, play essential roles in the production of resistant starch. This study aimed to develop α-amylase-treated maize flour with slow digestibility and unique physicochemical characteristics compared to native maize flour. In the current study, resistant starch type III from maize flour was prepared using α-amylase obtained from indigenously isolated Bacillus licheniformis. The α-amylase gene from B. licheniformis was amplified and cloned into the pET-24(a) vector, expressed in E. coli BL21 (DE3) cells and purified by metal ion affinity chromatography. The purified enzyme enhanced the yield of resistant starch 16-fold in maize flour. Scanning electron microscopy revealed that the granular structure of maize flour was disrupted into a dense network with irregular structure, and X-ray diffractograms confirmed the transformation from an amorphous to a crystalline structure upon α-amylase treatment. Thermogravimetric analysis revealed increased amylose content of α-amylase-treated maize flour. Moreover, α-amylase-treated maize flour resulted in a significant enhancement of the desired properties of maize flour, such as resistant starch content, amylose, milk absorption capacity, and iodine and fatty acid complexing ability, and a reduction in swelling power, water binding, oil absorption capacity, and in vitro digestibility compared to untreated maize flour. Resistant starch type III showed low digestibility and increased complexing ability with iodine and fatty acid and therefore could be a safe and beneficial alternative as a coating material for the delivery of active, sensitive ingredients to the colon.


Assuntos
Amido/biossíntese , Zea mays/metabolismo , alfa-Amilases/metabolismo , Amilose , Bacillus licheniformis/enzimologia , Bacillus licheniformis/metabolismo , Farinha , Hidrólise , Polissacarídeos/química , alfa-Amilases/genética
11.
Environ Sci Pollut Res Int ; 31(5): 7043-7057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157168

RESUMO

A lab-scale gravity-driven bioreactor (GDB) was designed and constructed to evaluate the simultaneous treatment of black liquor and domestic wastewater. The GDB was operated with a mixture of black liquor and domestic wastewater at a ratio of 1:1 and maintained at an average organic loading rate of 1235 mg-COD/L-Day. The wastewater was fed to the primary sedimentation tank at a flow rate of approximately 12 mL/min and subsequently passed through serially connected anaerobic and aerobic chambers with the same flow rate. Each wastewater sample was allowed to undergo a hydraulic retention time of approximately 72 h, ensuring effective treatment. The GDB was actively operated for nine samples (W1-W9) at a weekly frequency. The entire process was conducted within the workstation's ambient temperature range of 30-35 °C to sustain microbial activity and treatment efficiency in an open environment. The performance of the GDB was evaluated in terms of various pollution indicators, including COD, BOD5, lignin removal, TDS, TSS, EC, PO43-, SO42-, microbial load (CFU/mL and MPN index), total nitrogen, and color reduction. The results showed that the GDB achieved promising treatment efficiencies: 84.5% for COD, 71.80% for BOD5, 82.8% for TDS, 100% for TSS, 74.71% for E.C., 67.25% for PO43-, 81% for SO42-, and 69.36% for TN. Additionally, about 80% reduction in lignin content and 57% color reduction were observed after the treatment. The GDB substantially reduced microbial load in CFU/mL (77.98%) and MPN (90%). This study marks the first to report on wastewater treatment from two different sources (black liquor and domestic wastewater) using a simple GDB design. Furthermore, it highlights the GDB's potential as a cost-effective, environmentally friendly, and efficient solution for wastewater treatment, with no need for supplementary chemical or physical agents and zero operational costs.


Assuntos
Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Lignina , Reatores Biológicos
12.
Front Microbiol ; 15: 1320974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525078

RESUMO

Escherichia coli is the major causative agent of urinary tract infections worldwide and the emergence of multi-drug resistant determinants among clinical isolates necessitates the development of novel therapeutic agents. Lytic bacteriophages efficiently kill specific bacteria and seems promising approach in controlling infections caused by multi-drug resistant pathogens. This study aimed the isolation and detailed characterization of lytic bacteriophage designated as ES10 capable of lysing multidrug-resistant uropathogenic E. coli. ES10 had icosahedral head and non-contractile tail and genome size was 48,315 base pairs long encoding 74 proteins. Antibiotics resistance, virulence and lysogenic cycle associated genes were not found in ES10 phage genome. Morphological and whole genome analysis of ES10 phage showed that ES10 is the member of Drexlerviridae. Latent time of ES10 was 30 min, burst size was 90, and optimal multiplicity of infection was 1. ES10 was stable in human blood and subsequently caused 99.34% reduction of host bacteria. Calcium chloride shortened the adsorption time and latency period of ES10 and significantly inhibited biofilm formation of host bacteria. ES10 caused 99.84% reduction of host bacteria from contaminated fomites. ES10 phage possesses potential to be utilized in standard phage therapy.

13.
Bioresour Bioprocess ; 11(1): 8, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38647842

RESUMO

Generally wastewater such agricultural runoff is considered a nuisance; however, it could be harnessed as a potential source of nutrients like nitrates and phosphates in integrated biorefinery context. In the current study, microalgae Chlorella sp. S5 was used for bioremediation of agricultural runoff and the leftover algal biomass was used as a potential source for production of biofuels in an integrated biorefinery context. The microalgae Chlorella sp. S5 was cultivated on Blue Green (BG 11) medium and a comprehensive optimization of different parameters including phosphates, nitrates, and pH was carried out to acquire maximum algal biomass enriched with high lipids content. Dry biomass was quantified using the solvent extraction technique, while the identification of nitrates and phosphates in agricultural runoff was carried out using commercial kits. The algal extracted lipids (oils) were employed in enzymatic trans-esterification for biodiesel production using whole-cell biomass of Bacillus subtilis Q4 MZ841642. The resultant fatty acid methyl esters (FAMEs) were analyzed using Fourier transform infrared (FTIR) spectroscopy and gas chromatography coupled with mass spectrometry (GC-MS). Subsequently, both the intact algal biomass and its lipid-depleted algal biomass were used for biogas production within a batch anaerobic digestion setup. Interestingly, Chlorella sp. S5 demonstrated a substantial reduction of 95% in nitrate and 91% in phosphate from agricultural runoff. The biodiesel derived from algal biomass exhibited a noteworthy total FAME content of 98.2%, meeting the quality standards set by American Society for Testing and Materials (ASTM) and European union (EU) standards. Furthermore, the biomethane yields obtained from whole biomass and lipid-depleted biomass were 330.34 NmL/g VSadded and 364.34 NmL/g VSadded, respectively. In conclusion, the findings underscore the potent utility of Chlorella sp. S5 as a multi-faceted resource, proficiently employed in a sequential cascade for treating agricultural runoff, producing biodiesel, and generating biogas within the integrated biorefinery concept.

14.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631055

RESUMO

Radioresistant microorganisms possess inimitable capabilities enabling them to thrive under extreme radiation. However, the existence of radiosensitive microorganisms inhabiting such an inhospitable environment is still a mystery. The current study examines the potential of radioresistant microorganisms to protect radiosensitive microorganisms in harsh environments. Bacillus subtilis strain ASM-1 was isolated from the Thal desert in Pakistan and evaluated for antioxidative and radioprotective potential after being exposed to UV radiation. The strain exhibited 54.91% survivability under UVB radiation (5.424 × 103 J/m2 for 8 min) and 50.94% to mitomycin-C (4 µg/mL). Extracellular fractions collected from ASM-1 extracts showed significant antioxidant potential, and chemical profiling revealed a pool of bioactive compounds, including pyrrolopyrazines, amides, alcoholics, and phenolics. The E-2 fraction showed the maximum antioxidant potential via DPPH assay (75%), and H2O2 scavenging assay (68%). A combination of ASM-1 supernatant with E-2 fraction (50 µL in a ratio of 2:1) provided substantial protection to radiosensitive cell types, Bacillus altitudinis ASM-9 (MT722073) and E. coli (ATCC 10536), under UVB radiation. Docking studies reveal that the compound supported by literature against the target proteins have strong binding affinities which further inferred its medical uses in health care treatment. This is followed by molecular dynamic simulations where it was observed among trajectories that there were no significant changes in major secondary structure elements, despite the presence of naturally flexible loops. This behavior can be interpreted as a strategy to enhance intermolecular conformational stability as the simulation progresses. Thus, our study concludes that Bacillus subtilis ASM-1 protects radiosensitive strains from radiation-induced injuries via biofilm formation and secretion of antioxidative and radioprotective compounds in the environment.

15.
Appl Biochem Biotechnol ; 195(8): 4915-4935, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37115385

RESUMO

This study aims to determine UV-B resistance and to investigate computational analysis and antioxidant potential of methoxy-flavones of Micromonospora aurantiaca TMC-15 isolated from Thal Desert, Pakistan. The cellular extract was purified through solid-phase extraction and UV-Vis spectrum analysis indicated absorption peaks at λmax 250 nm, 343 nm, and 380 nm that revealed the presence of methoxy-flavones named eupatilin and 5-hydroxyauranetin. The flavones were evaluated for their antioxidant as well as protein and lipid peroxidation inhibition potential using di(phenyl)-(2,4,6-trinitrophenyl) iminoazanium (DPPH), 2,4-dinitrophenyl hydrazine (DNPH), and thiobarbituric acid reactive substances (TBARS) assays, respectively. The methoxy-flavones were further studied for their docking affinity and interaction dynamics to determine their structural and energetic properties at the atomic level. The antioxidant potential, protein, and lipid oxidation inhibition and DNA damage preventive abilities were correlated as predicted by computational analysis. The eupatilin and 5-hydroxyauranetin binding potential to their targeted proteins 1N8Q and 1OG5 is - 4.1 and - 7.5 kcal/mol, respectively. Moreover, the eupatiline and 5-hydroxyauranetin complexes illustrate van der Waals contacts and strong hydrogen bonds to their respective enzymes target. Both in vitro studies and computational analysis results revealed that methoxy-flavones of Micromonospora aurantiaca TMC-15 can be used against radiation-mediated oxidative damages due to its kosmotrophic nature. The demonstration of good antioxidant activities not only protect DNA but also protein and lipid oxidation and therefore could be a good candidate in radioprotective drugs and as sunscreen due to its kosmotropic nature.


Assuntos
Flavonas , Micromonospora , Flavonas/farmacologia , Antioxidantes/farmacologia , Lipídeos
16.
Bioresour Technol ; 362: 127801, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35995345

RESUMO

Hydrolytic bacteria are essential for the degradation of lignocellulose to produce biogas and organic fertilizers. In this study, sheep manure was used as substrate, and sheep manure slurry, yak rumen fluid and slurry from a biogas reactor (SBR) were used as inocula in single-stage anaerobic digestion. The SBR and rumen fluid inocula increased biogas production by 23% and 43%, respectively, when compared to solely sheep manure in the single-stage anaerobic digestion. The two-stage anaerobic digestion, with yak rumen fluid as inoculum in the hydrolytic reactor, increased the biogas production by 59, 86, and 58% compared with the control. Microbial analysis of the effluent revealed that yak rumen fluid contained hydrolytic bacteria such as Proteiniphilum, Jeotgalibaca, Fermentimonas, and Atopostipes to enhance the degradation of sheep manure and increase biogas production. It was concluded that yak rumen fluid, rich in hydrolytic bacteria, increases the degradability of sheep manure and improves production of volatile fatt acids and biogas.


Assuntos
Biocombustíveis , Esterco , Anaerobiose , Animais , Bactérias/metabolismo , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Bovinos , Esterco/microbiologia , Metano , Rúmen/microbiologia , Ovinos
17.
Saudi J Biol Sci ; 29(3): 1673-1682, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280554

RESUMO

Navigating novel biological strategies to mitigate bacterial biofilms have great worth to combat bacterial infections. Bacterial infections caused by the biofilm forming bacteria are 1000 times more resistant to antibiotics than the planktonic bacteria. Among the known bacterial infections, more than 70% involve biofilms which severely complicates treatment options. Biofilm formation is mainly regulated by the Quorum sensing (QS) mechanism. Interference with the QS system by the quorum quenching (QQ) enzyme is a potent strategy to mitigate biofilm. In this study, bacterial strains with QQ activity were identified and their anti-biofilm potential was investigated against the Multidrug Resistant (MDR) Pseudomonas aeruginosa. A Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136-based bioassays were used to confirm the degradation of different Acyl Homoserine Lactones (AHLs) by QQ isolates. The 16S rRNA gene sequencing of the isolated strains identified them as Bacillus cereus strain QSP03, B. subtilis strain QSP10, Pseudomonas putida strain QQ3 and P. aeruginosa strain QSP01. Biofilm mitigation potential of QQ isolates was tested against MDR P. aeruginosa and the results suggested that 50% biofilm reduction was observed by QQ3 and QSP01 strains, and around 60% reduction by QSP10 and QSP03 bacterial isolates. The presence of AHL degrading enzymes, lactonases and acylases, was confirmed by PCR based screening and sequencing of the already annotated genes aiiA, pvdQ and quiP. Altogether, these results exhibit that QQ bacterial strains or their products could be useful to control biofilm formation in P.aeruginosa.

18.
Bioresour Technol ; 345: 126219, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34813923

RESUMO

During in situ biogas up-gradation by supplying hydrogen from an external source and enrichment of hydrogenotrophic methanogens, high pressure of H2 negatively affects hydrolytic and fermentative activities. To overcome this problem, the present study aimed to enrich the hydrogenotrophic methanogens by optimization of various parameters associated with gas recirculation along-with hydrogen supply from the external source. Due to recirculation of gases and supplied hydrogen, methane generation was two-fold higher in the optimal condition than in conventional anaerobic digestion, with the highest methane content of 99%. Additionally, the hydrogenotrophic methanogens were enriched, with a decrease in acetoclastic methanogens and an increase in Bathyarchaeia population, which utilizes H2 and CO2 to produce acetate and lactate as end products. The study concludes that recirculation increases methane production by converting H2 and CO2 into methane and enhances the degradation of organic matter left over undigested in the hydrolytic reactor.


Assuntos
Biocombustíveis , Euryarchaeota , Anaerobiose , Reatores Biológicos , Gases , Hidrogênio , Metano
19.
Front Microbiol ; 13: 792426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464983

RESUMO

To utilize wastes and residues sustainably and excellently, there is a need to fend for efficient methods and resources for biogas production. Use of poultry waste for biogas production represents one of the most important routes toward reaching global renewable energy targets. The current study involves microbial pretreatment of chicken feather waste, followed by its co-digestion with rice husk and green grocery waste in batch and continuous reactors, respectively. Microbial pretreatment of chicken feathers by keratinase secreting Pseudomonas aeruginosa was an effective and eco-friendly approach to make its recalcitrant structure available as a raw substrate for biogas production. The current study also addressed the enhancement and stability of anaerobic digestion by co-digestion. Results demonstrated that biogas production was increased by microbial pretreatment of chicken feathers and that the percentage increase in biogas yield was 1.1% in microbialy pretreated feathers compared to mono-digestion (non-pretreated feathers) in batch fermentation. The highest yield of biogas was obtained in a batch reactor having co-digestion of pretreated rice husk and microbial pretreated chicken feathers. The co-digestion of chicken feathers hydrolysate with green grocery waste in continuous fermentation mode has also enhanced the biogas yield as compared to average of mono-digestion (chicken feather hydrolysate and green grocery waste) and, therefore, improve the efficiency of the overall process.

20.
PLoS One ; 17(5): e0267318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35576192

RESUMO

The increase in consumer demand for high-quality food products has led to growth in the use of new technologies and ingredients. Resistant starch (RS) is a recently recognised source of fibre and has received much attention for its potential health benefits and functional properties. However, knowledge about the fate of RS in modulating complex intestinal communities, the microbial members involved in its degradation, enhancement of microbial metabolites, and its functional role in body physiology is still limited. For this purpose, the current study was designed to ratify the physiological and functional health benefits of enzymatically prepared resistant starch (EM-RSIII) from maize flour. To approve the beneficial health effects as prebiotic, EM-RSIII was supplemented in rat diets. After 21 days of the experiment, EM-RSIII fed rats showed a significant reduction in body weight gain, fecal pH, glycemic response, serum lipid profile, insulin level and reshaping gut microbiota, and enhancing short-chain fatty acid compared to control. The count of butyrate-producing and starch utilizing bacteria, such as Lactobacillus, Enterococcus, and Pediococcus genus in rat's gut, elevated after the consumption of medium and high doses of EM-RSIII, while the E. coli completely suppressed in high EM-RSIII fed rats. Short-chain fatty acids precisely increased in feces of EM-RSIII feed rats. Correlation analysis demonstrated that the effect of butyrate on functional and physiological alteration on the body had been investigated during the current study. Conclusively, the present study demonstrated the unprecedented effect of utilising EM-RSIII as a diet on body physiology and redesigning gut microorganisms.


Assuntos
Microbioma Gastrointestinal , Amido Resistente , Animais , Butiratos/farmacologia , Escherichia coli/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Prebióticos/análise , Ratos , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA