Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inhal Toxicol ; : 1-11, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388309

RESUMO

INTRODUCTION: Particulate matter (PM) air pollution is associated with an increased incidence of lung diseases, but the underlying mechanisms have not been fully elucidated. In this study, a mouse model of subacute lung inflammation was employed to investigate the cellular responses and gene expression changes induced by exposure to natural ambient air pollution. METHODS: C57BL/6J mice were exposed to road dust (primarily PM10) at 150 µg/m³ for 21 days (8 h/day) through a nose-only inhalation exposure system. Lung tissues were analyzed for the expression of proinflammatory signaling, oxidative stress, and fibrosis markers. RNA-sequencing analysis was conducted to identify differentially expressed genes (DEGs). A gene ontology over-representation analysis was performed to identify the altered genetic pathways. RESULTS: Elevated levels of proinflammatory cytokines, including IL-1ß, IL-6, and TNF-α, and an increase in phosphorylated MAPK were determined in the road dust exposure group compared to the control group. Histopathological examinations revealed more severe lung inflammation and damage in the exposed mice, including fibrosis and bronchiolar hyperplasia. Gene expression profiling identified 108 DEGs, with decreases in most except genes such as Krt15 and Reg3g. The protein-protein interaction network analysis together with text-mining identified 18 key hub genes, associated with fatty acid oxidation, lipid metabolism, and peroxisomes. CONCLUSION: This study identified key genes, signaling pathways, and cellular responses in mouse lung affected by road dust exposure. These findings contribute to a deeper understanding of the transcriptional and cellular responses induced by subacute exposure to the PM in road dust.

2.
Exp Mol Med ; 56(2): 478-490, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38413821

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung remodeling and the excessive accumulation of extracellular matrix (ECM) proteins. In a previous study, we found that the levels of ornithine aminotransferase (OAT), a principal enzyme in the proline metabolism pathway, were increased in the lungs of patients with IPF. However, the precise role played by OAT in the pathogenesis of IPF is not yet clear. The mechanism by which OAT affects fibrogenesis was assessed in vitro using OAT-overexpressing and OAT-knockdown lung fibroblasts. The therapeutic effects of OAT inhibition were assessed in the lungs of bleomycin-treated mice. OAT expression was increased in fibrotic areas, principally in interstitial fibroblasts, of lungs affected by IPF. OAT levels in the bronchoalveolar lavage fluid of IPF patients were inversely correlated with lung function. The survival rate was significantly lower in the group with an OAT level >75.659 ng/mL than in the group with an OAT level ≤75.659 ng/mL (HR, 29.53; p = 0.0008). OAT overexpression and knockdown increased and decreased ECM component production by lung fibroblasts, respectively. OAT knockdown also inhibited transforming growth factor-ß1 (TGF)-ß1 activity and TGF-ß1 pathway signaling. OAT overexpression increased the generation of mitochondrial reactive oxygen species (ROS) by activating proline dehydrogenase. The OAT inhibitor L-canaline significantly attenuated bleomycin-induced lung injury and fibrosis. In conclusion, increased OAT levels in lungs affected by IPF contribute to the progression of fibrosis by promoting excessive mitochondrial ROS production, which in turn activates TGF-ß1 signaling. OAT may be a useful target for treating patients with fibrotic lung diseases, including IPF.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Animais , Humanos , Camundongos , Bleomicina , Proteínas da Matriz Extracelular , Fibrose , Pulmão/enzimologia , Ornitina-Oxo-Ácido Transaminase , Espécies Reativas de Oxigênio
3.
Mol Brain ; 14(1): 174, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876180

RESUMO

Ketamine, a non-competitive antagonist of the N-methyl-D-aspartate receptor (NMDAR), generates a rapidly-acting antidepressant effect. It exerts psychomimetic effects, yet demands a further investigation of its mechanism. Previous research showed that ketamine did no longer promote hyperlocomotion in GluN2D knockout (KO) mice, which is a subunit of NMDAR. In the present study, we tested whether GluN2D-containing NMDARs participate in the physiological changes in the medial prefrontal cortex (mPFC) triggered by ketamine. Sub-anesthetic dose of ketamine (25 mg/kg) elevated the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in wild-type (WT) mice, but not in GluN2D KO mice, 1 h after the injection. The amplitude of sEPSC and paired-pulse ratio (PPR) were unaltered by ketamine in both WT and GluN2D KO mice. These findings suggest that GluN2D-containing NMDARs might play a role in the ketamine-mediated changes in glutamatergic neurons in mPFC and, presumably, in ketamine-induced hyperlocomotion.


Assuntos
Ketamina , Animais , Potenciais Pós-Sinápticos Excitadores , Ketamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA