Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(21): e2206810, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811318

RESUMO

Robust and cost-effective membrane-based separations are essential to solving many global crises, such as the lack of clean water. Even though the current polymer-based membranes are widely used for separations, their performance and precision can be enhanced by using a biomimetic membrane architecture that consists of highly permeable and selective channels embedded in a universal membrane matrix. Researchers have shown that artificial water and ion channels, such as carbon nanotube porins (CNTPs), embedded in lipid membranes can deliver strong separation performance. However, their applications are limited by the relative fragility and low stability of the lipid matrix. In this work, we demonstrate that CNTPs can co-assemble into two dimension (2D) peptoid membrane nanosheets, opening up a way to produce highly programmable synthetic membranes with superior crystallinity and robustness. A combination of molecular dynamics (MD) simulations, Raman spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM) measurements to verify the co-assembly of CNTP and peptoids are used and show that it does not disrupt peptoid monomer packing within the membrane. These results provide a new option for designing affordable artificial membranes and highly robust nanoporous solids.


Assuntos
Nanotubos de Carbono , Peptoides , Nanotubos de Carbono/química , Porinas/química , Peptoides/química , Biomimética , Lipídeos , Água/química
2.
New Phytol ; 237(6): 2196-2209, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604847

RESUMO

Root gravitropism includes gravity perception in the root cap, signal transduction between root cap and elongation zone, and curvature response in the elongation zone. The barley (Hordeum vulgare) mutant enhanced gravitropism 2 (egt2) displays a hypergravitropic root phenotype. We compared the transcriptomic reprogramming of the root cap, the meristem, and the elongation zone of wild-type (WT) and egt2 seminal roots upon gravistimulation in a time-course experiment and identified direct interaction partners of EGT2 by yeast-two-hybrid screening and bimolecular fluorescence complementation validation. We demonstrated that the elongation zone is subjected to most transcriptomic changes after gravistimulation. Here, 33% of graviregulated genes are also transcriptionally controlled by EGT2, suggesting a central role of this gene in controlling the molecular networks associated with gravitropic bending. Gene co-expression analyses suggested a role of EGT2 in cell wall and reactive oxygen species-related processes, in which direct interaction partners of EGT2 regulated by EGT2 and gravity might be involved. Taken together, this study demonstrated the central role of EGT2 and its interaction partners in the networks controlling root zone-specific transcriptomic reprogramming of barley roots upon gravistimulation. These findings can contribute to the development of novel root idiotypes leading to improved crop performance.


Assuntos
Gravitropismo , Hordeum , Gravitropismo/genética , Hordeum/genética , Raízes de Plantas , Gravitação , Meristema
3.
New Phytol ; 237(4): 1204-1214, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345913

RESUMO

In maize (Zea mays L.), lateral roots are formed in the differentiation zone of all root types in a multi-step process. The maize mutant lateral rootless 1 (lrt1) is defective in lateral root formation in primary and seminal roots but not in shoot-borne roots. We cloned the lrt1 gene by mapping in combination with BSA-seq and subsequent validation via CRISPR/Cas9. The lrt1 gene encodes a 209 kDa homolog of the DDB1-CUL4-ASSOCIATED FACTOR (DCAF) subunit of the CUL4-based E3 ubiquitin ligase (CRL4) complex localized in the nucleus. DDB1-CUL4-ASSOCIATED FACTOR proteins are encoded by an evolutionary old gene family already present in nonseed plants. They are adaptors that bind substrate proteins and promote their ubiquitylation, thus typically marking them for subsequent degradation in the 26S proteasome. Gene expression studies demonstrated that lrt1 transcripts are expressed preferentially in the meristematic zone of all root types of maize. Downregulation of the rum1 gene in lrt1 mutants suggests that lrt1 acts upstream of the lateral root regulator rum1. Our results demonstrate that DCAF proteins play a key role in root-type-specific lateral root formation in maize. Together with its role in nitrogen acquisition in nitrogen-poor soil, lrt1 could be a promising target for maize improvement.


Assuntos
Ubiquitina-Proteína Ligases , Zea mays , Zea mays/genética , Zea mays/metabolismo , Subunidades Proteicas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Meristema/metabolismo
4.
Plant Physiol ; 188(3): 1537-1549, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34893899

RESUMO

Plant plastidial acyl-acyl carrier protein (ACP) desaturases are a soluble class of diiron-containing enzymes that are distinct from the diiron-containing integral membrane desaturases found in plants and other organisms. The archetype of this class is the stearoyl-ACP desaturase which converts stearoyl-ACP into oleoyl (18:1Δ9cis)-ACP. Several variants expressing distinct regioselectivity have been described including a Δ6-16:0-ACP desaturase from black-eyed Susan vine (Thunbergia alata). We solved a crystal structure of the T. alata desaturase at 2.05 Å resolution. Using molecular dynamics (MD) simulations, we identified a low-energy complex between 16:0-ACP and the desaturase that would position C6 and C7 of the acyl chain adjacent to the diiron active site. The model complex was used to identify mutant variants that could convert the T. alata Δ6 desaturase to Δ9 regioselectivity. Additional modeling between ACP and the mutant variants confirmed the predicted regioselectivity. To validate the in-silico predictions, we synthesized two variants of the T. alata desaturase and analyzed their reaction products using gas chromatography-coupled mass spectrometry. Assay results confirmed that mutants designed to convert T. alata Δ6 to Δ9 selectivity exhibited the predicted changes. In complementary experiments, variants of the castor desaturase designed to convert Δ9 to Δ6 selectivity lost some of their Δ9 desaturation ability and gained the ability to desaturate at the Δ6 position. The computational workflow for revealing the mechanistic understanding of regioselectivity presented herein lays a foundation for designing acyl-ACP desaturases with novel selectivities to increase the diversity of monoenes available for bioproduct applications.


Assuntos
Acanthaceae/genética , Acanthaceae/metabolismo , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Redes e Vias Metabólicas , Estrutura Molecular , Relação Estrutura-Atividade
5.
J Phys Chem A ; 126(1): 44-52, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34941278

RESUMO

Identification of molecules and elucidation of their chemical structure are ubiquitous problems in chemistry. Mass spectrometry (MS) can be used due to its sensitivity and versatility. For detection to occur, analytes must be ionized and transferred to the gas phase. Soft ionization processes such as electrospray ionization are popular; however, resulting microsolvated phases can alter the chemistry of analytes and therefore detection and identification. To understand these processes, we use computational methods to probe the ionization propensity of serine in the gas phase, aqueous microsolvated clusters, and aqueous solution. We show that the tautomeric form of serine is altered by the presence of water, as five water molecules can stabilize the zwitterionic tautomer. Inclusion of cosolutes such as ions can stabilize the zwitterion with as few as one or two water molecules present. We demonstrate that ionization propensity, as measured by gas phase bacisity, can increase by over 100 kJ/mol when placed in a small water-serine cluster, showing the sensitivity of the chemistry of microsolvated analytes. Finally, detailed analysis reveals that small droplets (less than seven water molecules) are extremely sensitive to addition of further water molecules. Beyond this limit, structural and electronic properties change little with droplet size.


Assuntos
Serina , Água , Íons
6.
Proc Natl Acad Sci U S A ; 116(30): 14874-14880, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31278149

RESUMO

We exploit gas-phase cluster ion techniques to provide insight into the local interactions underlying divalent metal ion-driven changes in the spectra of carboxylic acids at the air-water interface. This information clarifies the experimental findings that the CO stretching bands of long-chain acids appear at very similar energies when the head group is deprotonated by high subphase pH or exposed to relatively high concentrations of Ca2+ metal ions. To this end, we report the evolution of the vibrational spectra of size-selected [Ca2+·RCO2-]+·(H2O) n=0to12 and RCO2-·(H2O) n=0to14 cluster ions toward the features observed at the air-water interface. Surprisingly, not only does stepwise hydration of the RCO2- anion and the [Ca2+·RCO2-]+ contact ion pair yield solvatochromic responses in opposite directions, but in both cases, the responses of the 2 (symmetric and asymmetric stretching) CO bands to hydration are opposite to each other. The result is that both CO bands evolve toward their interfacial asymptotes from opposite directions. Simulations of the [Ca2+·RCO2-]+·(H2O) n clusters indicate that the metal ion remains directly bound to the head group in a contact ion pair motif as the asymmetric CO stretch converges at the interfacial value by n = 12. This establishes that direct metal complexation or deprotonation can account for the interfacial behavior. We discuss these effects in the context of a model that invokes the water network-dependent local electric field along the C-C bond that connects the head group to the hydrocarbon tail as the key microscopic parameter that is correlated with the observed trends.

7.
Biophys J ; 120(17): 3841-3853, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-33631202

RESUMO

The plant acyl-acyl carrier protein (ACP) desaturases are a family of soluble enzymes that convert saturated fatty acyl-ACPs into their cis-monounsaturated equivalents in an oxygen-dependent reaction. These enzymes play a key role in biosynthesis of monounsaturated fatty acids in plants. ACPs are central proteins in fatty acid biosynthesis that deliver acyl chains to desaturases. They have been reported to show a varying degree of local dynamics and structural variability depending on the acyl chain size. It has been suggested that substrate-specific changes in ACP structure and dynamics have a crucial impact on the desaturase enzymatic activity. Using molecular dynamics simulations, we investigated the intrinsic solution structure and dynamics of ACP from spinach with four different acyl chains: capric (C10), myristic (C14), palmitic (C16), and stearic (C18) acids. We found that the fatty acids can adopt two distinct structural binding motifs, which feature different binding free energies and influence the ACP dynamics in a different manner. Docking simulations of ACP to castor Δ9-desaturase and ivy Δ4-desaturase suggest that ACP desaturase interactions could lead to a preferential selection between the motifs.


Assuntos
Proteína de Transporte de Acila , Spinacia oleracea , Ácidos Graxos , Ácidos Graxos Monoinsaturados
8.
J Am Chem Soc ; 142(13): 6093-6102, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32079390

RESUMO

When hydrolyzable cations such as aluminum interact with solid-water interfaces, macroscopic interfacial properties (e.g., surface charge and potential) and interfacial phenomena (e.g., particle adhesion) become tightly linked with the microscopic details of ion adsorption and speciation. We use in situ atomic force microscopy to directly image individual aluminum ions at a mica-water interface and show how adsorbate populations change with pH and aluminum activity. Complementary streaming potential measurements then allow us to build a triple layer model (TLM) that links surface potentials to adsorbate populations, via equilibrium binding constants. Our model predicts that hydrolyzed species dominate the mica-water interface, even when unhydrolyzed species dominate the solution. Ab initio molecular dynamics (AIMD) simulations confirm that aluminum hydrolysis is strongly promoted at the interface. The TLM indicates that hydrolyzed adsorbates are responsible for surface-potential inversions, and we find strong correlations between hydrolyzed adsorbates and particle-adhesion forces, suggesting that these species mediate adhesion by chemical bridging.


Assuntos
Silicatos de Alumínio/química , Alumínio/análise , Água/química , Adsorção , Hidrólise , Simulação de Dinâmica Molecular , Propriedades de Superfície
9.
Phys Chem Chem Phys ; 22(19): 10641-10652, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31894785

RESUMO

The ability to reproduce the experimental structure of water around the sodium and potassium ions is a key test of the quality of interaction potentials due to the central importance of these ions in a wide range of important phenomena. Here, we simulate the Na+ and K+ ions in bulk water using three density functional theory functionals: (1) the generalized gradient approximation (GGA) based dispersion corrected revised Perdew, Burke, and Ernzerhof functional (revPBE-D3) (2) the recently developed strongly constrained and appropriately normed (SCAN) functional (3) the random phase approximation (RPA) functional for potassium. We compare with experimental X-ray diffraction (XRD) and X-ray absorption fine structure (EXAFS) measurements to demonstrate that SCAN accurately reproduces key structural details of the hydration structure around the sodium and potassium cations, whereas revPBE-D3 fails to do so. However, we show that SCAN provides a worse description of pure water in comparison with revPBE-D3. RPA also shows an improvement for K+, but slow convergence prevents rigorous comparison. Finally, we analyse cluster energetics to show SCAN and RPA have smaller fluctuations of the mean error of ion-water cluster binding energies compared with revPBE-D3.

10.
J Chem Phys ; 153(2): 024103, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668925

RESUMO

We study the prototypical SN2 reaction Cl- + CH3Cl → CH3Cl + Cl- in water using quantum mechanics/molecular mechanics (QM/MM) computer simulations with transition path sampling and inertial likelihood maximization. We have identified a new solvent coordinate to complement the original atom-exchange coordinate used in the classic analysis by Chandrasekhar, Smith, and Jorgensen [J. Am. Chem. Soc. 107, 154 (1985)]. The new solvent coordinate quantifies instantaneous solvent-induced polarization relative to the equilibrium average charge density at each point along the reaction pathway. On the basis of likelihood scores and committor distributions, the new solvent coordinate improves upon the description of solvent dynamical effects relative to previously proposed solvent coordinates. However, it does not increase the transmission coefficient or the accuracy of a transition state theory rate calculation.

11.
J Am Chem Soc ; 141(5): 2135-2142, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30615440

RESUMO

Muscovite mica (001) is a widely used model surface for controlling molecular assembly and a common substrate for environmental adsorption processes. The mica (001) surface displays near-trigonal symmetry, but many molecular adsorbates-including water-exhibit unequal probabilities of alignment along its three nominally equivalent lattice directions. Buried hydroxyl groups within the muscovite structure are speculated to be responsible, but direct evidence is lacking. Here, we utilize vibrational sum frequency generation spectroscopy (vSFG) to characterize the orientation and hydrogen-bonding environment of near-surface hydroxyls inside mica. Multiple distinct peaks are detected in the O-H stretch region, which we attribute to Si/Al substitution in the SiO4 tetrahedron and K+ ion adsorption above the hydroxyls based on density functional theory simulations. Our findings demonstrate that vSFG can identify the absolute orientation of -OH groups and, hence, the surface termination at a mica surface, providing a means to investigate how -OH groups influence molecular adsorption and better understand mica stacking-sequences and physical behavior.

12.
Nat Mater ; 16(7): 767-774, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28414316

RESUMO

Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede the appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct versus two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-step pathway that begins with the creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for the design of self-assembling polymer systems.


Assuntos
Materiais Biomiméticos/química , Modelos Químicos , Modelos Moleculares , Peptidomiméticos/química , Cristalização , Cinética
13.
Biomacromolecules ; 19(3): 1006-1015, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29443506

RESUMO

Peptoids are peptide-mimetic biopolymers that are easy to synthesize and adaptable for use in drugs, chemical scaffolds, and coatings. However, there is insufficient information about their structural preferences and interactions with the environment in various applications. We conducted a study to understand the fundamental differences between peptides and peptoids using molecular dynamics simulations with semiempirical (PM6) and empirical (AMBER) potentials, in conjunction with metadynamics enhanced sampling. From studies of single molecules in water and on surfaces, we found that sarcosine (model peptoid) is much more flexible than alanine (model peptide) in different environments. However, the sarcosine and alanine interact similarly with a hydrophobic or a hydrophilic. Finally, this study highlights the conformational landscape of peptoids and the dominant interactions that drive peptoids toward these conformations.


Assuntos
Materiais Biomiméticos/química , Simulação de Dinâmica Molecular , Peptoides/química , Água/química
14.
J Chem Phys ; 148(22): 222819, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907030

RESUMO

The tetra-phenyl arsonium and tetra-phenyl borate (TATB) assumption is a commonly used extra-thermodynamic assumption that allows single ion free energies to be split into cationic and anionic contributions. The assumption is that the values for the TATB salt can be divided equally. This is justified by arguing that these large hydrophobic ions will cause a symmetric response in water. Experimental and classical simulation work has raised potential flaws with this assumption, indicating that hydrogen bonding with the phenyl ring may favor the solvation of the TB- anion. Here, we perform ab initio molecular dynamics simulations of these ions in bulk water demonstrating that there are significant structural differences. We quantify our findings by reproducing the experimentally observed vibrational shift for the TB- anion and confirm that this is associated with hydrogen bonding with the phenyl rings. Finally, we demonstrate that this results in a substantial energetic preference of the water to solvate the anion. Our results suggest that the validity of the TATB assumption, which is still widely used today, should be reconsidered experimentally in order to properly reference single ion solvation free energy, enthalpy, and entropy.

15.
J Chem Phys ; 149(19): 194702, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30466279

RESUMO

The surface tension of dilute salt water is a fundamental property that is crucial to understanding the complexity of many aqueous phase processes. Small ions are known to be repelled from the air-water surface leading to an increase in the surface tension in accordance with the Gibbs adsorption isotherm. The Jones-Ray effect refers to the observation that at extremely low salt concentration, the surface tension decreases. Determining the mechanism that is responsible for this Jones-Ray effect is important for theoretically predicting the distribution of ions near surfaces. Here we use both experimental surface tension measurements and numerical solution of the Poisson-Boltzmann equation to demonstrate that very low concentrations of surfactant in water create a Jones-Ray effect. We also demonstrate that the low concentrations of the surfactant necessary to create the Jones-Ray effect are too small to be detectable by surface sensitive spectroscopic measurements. The effect of surface curvature on this behavior is also examined, and the implications for unexplained bubble phenomena are discussed. This work suggests that the purity standards for water may be inadequate and that the interactions between ions with background impurities are important to incorporate into our understanding of the driving forces that give rise to the speciation of ions at interfaces.

16.
J Chem Phys ; 147(16): 161716, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096478

RESUMO

Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

17.
J Chem Phys ; 146(24): 244501, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668048

RESUMO

First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

18.
Annu Rev Phys Chem ; 64: 339-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23331311

RESUMO

Chemistry occurring at or near the surface of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface and recent advances in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces.

19.
Sci Adv ; 10(20): eadn0895, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758793

RESUMO

SUCROSE-NON-FERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), a central plant metabolic sensor kinase, phosphorylates its target proteins, triggering a global shift from anabolism to catabolism. Molecular modeling revealed that upon binding of KIN10 to GEMINIVIRUS REP-INTERACTING KINASE1 (GRIK1), KIN10's activation T-loop reorients into GRIK1's active site, enabling its phosphorylation and activation. Trehalose 6-phosphate (T6P) is a proxy for cellular sugar status and a potent inhibitor of SnRK1. T6P binds to KIN10, a SnRK1 catalytic subunit, weakening its affinity for GRIK1. Here, we investigate the molecular details of T6P inhibition of KIN10. Molecular dynamics simulations and in vitro phosphorylation assays identified and validated the T6P binding site on KIN10. Under high-sugar conditions, T6P binds to KIN10, blocking the reorientation of its activation loop and preventing its phosphorylation and activation by GRIK1. Under these conditions, SnRK1 maintains only basal activity levels, minimizing phosphorylation of its target proteins, thereby facilitating a general shift from catabolism to anabolism.


Assuntos
Proteínas de Arabidopsis , Simulação de Dinâmica Molecular , Proteínas Serina-Treonina Quinases , Fosfatos Açúcares , Trealose , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Ligação Proteica , Arabidopsis/metabolismo , Sítios de Ligação , Fatores de Transcrição
20.
Microbiome ; 12(1): 124, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982519

RESUMO

BACKGROUND: Beneficial associations between plants and soil microorganisms are critical for crop fitness and resilience. However, it remains obscure how microorganisms are assembled across different root compartments and to what extent such recruited microbiomes determine crop performance. Here, we surveyed the root transcriptome and the root and rhizosphere microbiome via RNA sequencing and full-length (V1-V9) 16S rRNA gene sequencing from genetically distinct monogenic root mutants of maize (Zea mays L.) under different nutrient-limiting conditions. RESULTS: Overall transcriptome and microbiome display a clear assembly pattern across the compartments, i.e., from the soil through the rhizosphere to the root tissues. Co-variation analysis identified that genotype dominated the effect on the microbial community and gene expression over the nutrient stress conditions. Integrated transcriptomic and microbial analyses demonstrated that mutations affecting lateral root development had the largest effect on host gene expression and microbiome assembly, as compared to mutations affecting other root types. Cooccurrence and trans-kingdom network association analysis demonstrated that the keystone bacterial taxon Massilia (Oxalobacteraceae) is associated with root functional genes involved in flowering time and overall plant biomass. We further observed that the developmental stage drives the differentiation of the rhizosphere microbial assembly, especially the associations of the keystone bacteria Massilia with functional genes in reproduction. Taking advantage of microbial inoculation experiments using a maize early flowering mutant, we confirmed that Massilia-driven maize growth promotion indeed depends on flowering time. CONCLUSION: We conclude that specific microbiota supporting lateral root formation could enhance crop performance by mediating functional gene expression underlying plant flowering time in maize. Video Abstract.


Assuntos
Flores , Microbiota , Raízes de Plantas , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Zea mays , Zea mays/microbiologia , Zea mays/genética , Raízes de Plantas/microbiologia , Flores/microbiologia , Flores/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Transcriptoma , Mutação , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA