Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Methods ; 11(8): 809-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24973947

RESUMO

MicroRNAs are important negative regulators of protein-coding gene expression and have been studied intensively over the past years. Several measurement platforms have been developed to determine relative miRNA abundance in biological samples using different technologies such as small RNA sequencing, reverse transcription-quantitative PCR (RT-qPCR) and (microarray) hybridization. In this study, we systematically compared 12 commercially available platforms for analysis of microRNA expression. We measured an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples and synthetic spikes from microRNA family members with varying homology. We developed robust quality metrics to objectively assess platform performance in terms of reproducibility, sensitivity, accuracy, specificity and concordance of differential expression. The results indicate that each method has its strengths and weaknesses, which help to guide informed selection of a quantitative microRNA gene expression platform for particular study goals.


Assuntos
MicroRNAs/genética , Controle de Qualidade , Reprodutibilidade dos Testes
2.
JCI Insight ; 5(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841222

RESUMO

Myeloid cells orchestrate the antitumor immune response and influence the efficacy of immune checkpoint blockade (ICB) therapies. We and others have previously shown that IL-32 mediates DC differentiation and macrophage activation. Here, we demonstrate that IL-32 expression in human melanoma positively correlates with overall survival, response to ICB, and an immune-inflamed tumor microenvironment (TME) enriched in mature DC, M1 macrophages, and CD8+ T cells. Treatment of B16F10 murine melanomas with IL-32 increased the frequencies of activated, tumor-specific CD8+ T cells, leading to the induction of systemic tumor immunity. Our mechanistic in vivo studies revealed a potentially novel role of IL-32 in activating intratumoral DC and macrophages to act in concert to prime CD8+ T cells and recruit them into the TME through CCL5. Thereby, IL-32 treatment reduced tumor growth and rendered ICB-resistant B16F10 tumors responsive to anti-PD-1 therapy without toxicity. Furthermore, increased baseline IL-32 gene expression was associated with response to nivolumab and pembrolizumab in 2 independent cohorts of patients with melanoma, implying that IL-32 is a predictive biomarker for anti-PD-1 therapy. Collectively, this study suggests IL-32 as a potent adjuvant in immunotherapy to enhance the efficacy of ICB in patients with non-T cell-inflamed TME.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucinas/metabolismo , Melanoma/imunologia , Microambiente Tumoral/imunologia , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Estudos de Coortes , Células Dendríticas/imunologia , Feminino , Seguimentos , Humanos , Interleucinas/genética , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nivolumabe/administração & dosagem , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biomark Res ; 2: 17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25285214

RESUMO

BACKGROUND: Exact sample annotation in expression microarray datasets is essential for any type of pharmacogenomics research. RESULTS: Candidate markers were explored through the application of Hartigans' dip test statistics to a publically available human whole genome microarray dataset. The marker performance was tested on 188 serial samples from 53 donors and of variable tissue origin from five public microarray datasets. A qualified transcript marker panel consisting of three probe sets for human leukocyte antigens HLA-DQA1 (2 probe sets) and HLA-DRB4 identified sample donor identifier inconsistencies in six of the 188 test samples. About 3% of the test samples require root-cause analysis due to unresolvable inaccuracies. CONCLUSIONS: The transcript marker panel consisting of HLA-DQA1 and HLA-DRB4 represents a robust, tissue-independent composite marker to assist control donor annotation concordance at the transcript level. Allele-selectivity of HLA genes renders them good candidates for "fingerprinting" with donor specific expression pattern.

4.
Microbiol Res ; 169(2-3): 107-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24360837

RESUMO

Due to evolutionary conservation of biology, experimental knowledge captured from genetic studies in eukaryotic model organisms provides insight into human cellular pathways and ultimately physiology. Yeast chemogenomic profiling is a powerful approach for annotating cellular responses to small molecules. Using an optimized platform, we provide the relative sensitivities of the heterozygous and homozygous deletion collections for nearly 1800 biologically active compounds. The data quality enables unique insights into pathways that are sensitive and resistant to a given perturbation, as demonstrated with both known and novel compounds. We present examples of novel compounds that inhibit the therapeutically relevant fatty acid synthase and desaturase (Fas1p and Ole1p), and demonstrate how the individual profiles facilitate hypothesis-driven experiments to delineate compound mechanism of action. Importantly, the scale and diversity of tested compounds yields a dataset where the number of modulated pathways approaches saturation. This resource can be used to map novel biological connections, and also identify functions for unannotated genes. We validated hypotheses generated by global two-way hierarchical clustering of profiles for (i) novel compounds with a similar mechanism of action acting upon microtubules or vacuolar ATPases, and (ii) an un-annotated ORF, YIL060w, that plays a role in respiration in the mitochondria. Finally, we identify and characterize background mutations in the widely used yeast deletion collection which should improve the interpretation of past and future screens throughout the community. This comprehensive resource of cellular responses enables the expansion of our understanding of eukaryotic pathway biology.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Vias Biossintéticas , Farmacorresistência Fúngica , Regulação Fúngica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Mol Diagn ; 14(1): 12-21, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22074760

RESUMO

Although a number of technical parameters are now being examined to optimize microRNA profiling experiments, it is unknown whether reagent or component changes to the labeling step affect starting RNA requirements or microarray performance. Human brain/lung samples were each labeled in duplicate, at 1.0, 0.5, 0.2, and 0.1 µg of total RNA, by means of two kits that use the same labeling procedure but differ in the reagent composition used to label microRNAs. Statistical measures of reliability and validity were used to evaluate microarray data. Cross-platform confirmation was accomplished using TaqMan microRNA assays. Synthetic microRNA spike-in experiments were also performed to establish the microarray signal dynamic range using the ligation-modified kit. Technical replicate correlations of signal intensity values were high using both kits, but improved with the ligation-modified assay. The drop in detection call sensitivity and miRNA gene list correlations, when using reduced amounts of standard-labeled RNA, was considerably improved with the ligation-modified kit. Microarray signal dynamic range was found to be linear across three orders of magnitude from 4.88 to 5000 attomoles. Thus, optimization of the microRNA labeling reagent can result in at least a 10-fold decrease in microarray total RNA requirements with little compromise to data quality. Clinical investigations bottlenecked by the amount of starting material may use a ligation mix modification strategy to reduce total RNA requirements.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Coloração e Rotulagem/métodos , Animais , Biotina/química , Encéfalo/metabolismo , Perfilação da Expressão Gênica/normas , Humanos , Pulmão/metabolismo , MicroRNAs/química , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/normas , Kit de Reagentes para Diagnóstico , Padrões de Referência , Reprodutibilidade dos Testes , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA