Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Indoor Air ; 32(11): e13144, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36437669

RESUMO

Indoor air in residential dwellings can contain a variety of chemicals, sometimes present at concentrations or in combinations which can have a negative impact on human health. Indoor Air Quality (IAQ) surveys are often required to characterize human exposure or to investigate IAQ concerns and complaints. Such surveys should include sufficient contextual information to elucidate sources, pathways, and the magnitude of exposures. The aim of this review was to investigate and describe the parameters that affect IAQ in residential dwellings: building location, layout, and ventilation, finishing materials, occupant activities, and occupant demography. About 180 peer-reviewed articles, published from 01/2013 to 09/2021 (plus some important earlier publications), were reviewed. The importance of the building parameters largely depends on the study objectives and whether the focus is on a specific pollutant or to assess health risk. When considering classical pollutants such as particulate matter (PM) or volatile organic compounds (VOCs), the building parameters can have a significant impact on IAQ, and detailed information of these parameters needs to be reported in each study. Research gaps and suggestions for the future studies together with recommendation of where measurements should be done are also provided.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Humanos , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise
2.
Phys Chem Chem Phys ; 22(10): 5625-5637, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32101185

RESUMO

The aqueous-phase and surface reactions of ozone (O3) with iodide (I-) in/on seawater have been recently found to be a strong atmospheric source of iodine. In addition, ozone also reacts with I- in solid and aqueous sea-salt aerosol. However, the primary products of the heterogeneous reactions of ozone with I- have not been clarified. In this paper, solid and aqueous KI aerosols have been exposed to ozone in an aerosol flow tube system and I- and iodate (IO3-) concentrations have been measured by UV-Vis spectroscopy. The results of these experiments have been combined with a kinetic model to elucidate the primary products of the aqueous and surface reactions. The reaction of ozone with aqueous iodide has been inferred to originate different products depending on whether it occurs at the surface via O3 adsorption (product I2-) or in the aqueous phase via O3 solvation (product IO-). The surface reaction of ozone with solid KI in the presence of water vapor forms KIO3, and other species, which are likely to be gaseous. Although the reactions have been studied in aerosols, the results can be extrapolated to aqueous solutions as well.

3.
Phys Chem Chem Phys ; 21(36): 19835-19856, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31497813

RESUMO

The heterogeneous interactions of gaseous ozone (O3) with seawater and with sea-salt aerosols are known to generate volatile halogen species, which, in turn, lead to further destruction of O3. Here, a kinetic model for the interaction of ozone (O3) with Br- and I- solutions and aqueous particles has been proposed that satisfactorily explains previous literature studies about this process. Apart from the aqueous-phase reactions X- + O3 (X = I, Br), the interaction also involves the surface reactions X- + O3 that occur via O3 adsorption on the aqueous surface. In single salt solutions and aerosols, the partial order in ozone and the total order of the surface reactions are one, but the apparent total order is second order because the number of ozone sites where reaction can occur is equal to the surficial concentration of X- ([X-]surf). In the presence of Cl-, the surface reactions are enhanced by a factor equal to , where and . Therefore, we have inferred that Cl- acts as a catalyst in the surface reactions X- + O3. The model has been applied to estimate ozone uptake by the reaction with these halides in/on seawater and in/on sea-salt aerosol, where it has been concluded that the Cl--catalyzed surface reaction is important relative to total ozone uptake and should therefore be considered to model Y/YO (Y = I, Br, Cl) levels in the troposphere.

4.
Phys Chem Chem Phys ; 20(43): 27571-27584, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30371706

RESUMO

The main source of atmospheric iodine is the heterogeneous reaction of aqueous iodide (I-) with ozone (O3), which takes place in surface seawater and probably in sea-salt aerosols. However, there are seemingly contradictory conclusions about whether this heterogeneous reaction occurs in the bulk of the aqueous phase, via O3 dissolution, or at the aqueous surface, via O3 adsorption. In this work, the ozone uptake coefficient has been calculated as a function of the concentration of aqueous iodide ([I-]aq) and gaseous ozone near the aqueous surface ([O3]gs) by estimating parameters of the resistor model using results of previous studies. The calculated uptake coefficients suggest that the aqueous-phase reaction dominates at low I- concentrations (about <10-4 mol L-1), regardless of [O3]gs, and also at sufficiently high [O3]gs (about >80 ppm), regardless of [I-]aq. In contrast, the surface reaction dominates at high [I-]aq (about >10-4 mol L-1) as long as [O3]gs is low enough (about <80 ppm). This trend is able to reconcile previous studies of this reaction, and is a consequence of several factors, including the high surface excess of both reactants ozone and iodide. Given the typical O3 concentrations in the troposphere and the possible I- concentrations and O3 solubilities in sea-salt aerosols, the surface reaction may compete with the aqueous-phase reaction in accumulation-mode aerosols, unlike in surface seawater, where the aqueous-phase reaction probably prevails. The rate constant of the surface reaction has been estimated as (3-40) × 10-13 cm2 molecule-1 s-1.

5.
Phys Chem Chem Phys ; 18(38): 26423-26433, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27711478

RESUMO

Using laser flash photolysis coupled to photo-ionization time-of-flight mass spectrometry (PIMS), methyl radicals (CH3) have been detected as primary products from the reaction of OH radicals with acetaldehyde (ethanal, CH3CHO) with a yield of ∼15% at 1-2 Torr of helium bath gas. Supporting measurements based on laser induced fluorescence studies of OH recycling in the OH/CH3CHO/O2 system are consistent with the PIMS study. Master equation calculations suggest that the origin of the methyl radicals is from prompt dissociation of chemically activated acetyl products and hence is consistent with previous studies which have shown that abstraction, rather than addition/elimination, is the sole route for the OH + acetaldehyde reaction. However, the observation of a significant methyl product yield suggests that energy partitioning in the reaction is different from the typical early barrier mechanism where reaction exothermicity is channeled preferentially into the newly formed bond. The master equation calculations predict atmospheric yields of methyl radicals of ∼9%. The implications of the observations in atmospheric and combustion chemistry are briefly discussed.

6.
Talanta ; 234: 122699, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364495

RESUMO

Hydroperoxides play important roles in atmospheric chemical processes since they act as strong oxidants. This paper details with the modification, characterization and performance of different carbon-based screen-printed electrodes to develop a sensor that allows to analyze organic and inorganic hydroperoxides in atmospheric samples. Commercial electrodes made up of graphite, graphene, carbon nanotubes and graphene oxide were electrochemically activated and subsequently modified by layer-by-layer method with a conducting polymer of azure-A and electrodeposited platinum nanoparticles. Characterization of modified electrodes was performed by FE-SEM, XPS, Raman spectroscopy, cyclic voltammetry, and impedance spectroscopy. Even though all modified carbonaceous substrates enabled the development of competitive electrochemical sensors for (in)organic hydroperoxides detection, carbon nanotubes underlying substrate exhibited the best performances in terms of sensitivity, stability, limit of detection and linear range. This amperometric sensor displayed linear responses to hydroperoxides over 0.081-450 µM with detection limits in the range of 24-558 nM and sensitivity values among 0.0628±1.6E-4 and 0.0112±0.71E-4 µA/µM for the different hydroperoxides herein studied. The developed electrochemical sensor was successfully applied to the analysis of (in)organic hydroperoxides in rainwater samples. Measurements in rainwater were performed in a city located in the East of Spain and collected at two different sites (downtown and suburban area) on two different dates (July and November 2020). The presented results demonstrated high sensitivity and selectivity for the detection of hydroperoxides among a plethora of substances naturally present in rainwater.


Assuntos
Grafite , Nanopartículas Metálicas , Nanotubos de Carbono , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Limite de Detecção , Platina
7.
J Geophys Res Atmos ; 123(8): 4273-4283, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29938147

RESUMO

It has been hypothesized that black carbon (BC) influences mixed-phase clouds by acting as an ice-nucleating particle (INP). However, the literature data for ice nucleation by BC immersed in supercooled water are extremely varied, with some studies reporting that BC is very effective at nucleating ice, whereas others report no ice-nucleating ability. Here we present new experimental results for immersion mode ice nucleation by BC from two contrasting fuels (n-decane and eugenol). We observe no significant heterogeneous nucleation by either sample. Using a global aerosol model, we quantify the maximum relative importance of BC for ice nucleation when compared with K-feldspar and marine organic aerosol acting as INP. Based on the upper limit from our laboratory data, we show that BC contributes at least several orders of magnitude less INP than feldspar and marine organic aerosol. Representations of its atmospheric ice-nucleating ability based on older laboratory data produce unrealistic results when compared against ambient observations of INP. Since BC is a complex material, it cannot be unambiguously ruled out as an important INP species in all locations at all times. Therefore, we use our model to estimate a range of values for the density of active sites that BC particles must have to be relevant for ice nucleation in the atmosphere. The estimated values will guide future work on BC, defining the required sensitivity of future experimental studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA