RESUMO
Environmental pollution by diverse organic pollutants is a serious issue facing humanity, and the scientific community is working hard to find a solution to climatic change due to pollution. Along the same lines, we have tried to find a material/method which is economical and less laborious for achieving the same desired objectives. In this work, the surface modification of titanium dioxide to be used as a photocatalyst was carried out with different concentrations of alkyl silane agent APTES (3-aminopropyltriethoxysilane) and studied their impact on the degradation of representative compound, i.e., methylene blue. The surface-modified TiO2-APTES nanoparticles were obtained via the solvothermal process. The APTES in different molar (0.21-0.41 M) concentrations was obtained by dissolving APTES in ethanol. The obtained samples were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy, and UV-visible spectroscopy. The photocatalytic activity was inferred from the degradation ability of functionalized nanoparticles for methylene blue and evaluated by UV-visible spectroscopy. Our results demonstrated a significant 70% degradation rate of methylene blue.
Assuntos
Recuperação e Remediação Ambiental , Azul de Metileno , Azul de Metileno/química , Silanos , Monitoramento Ambiental , Titânio/química , Compostos Orgânicos , CatáliseRESUMO
The intake of toxic metals from cooking utensils through food is of growing concern to the medical community. This intake poses serious risk to human health. In many developing countries, different types of contaminated metals scraps are used to make cooking utensils. The leaching of both nutritionally essential and toxic metals in significant quantities from cookware during the cooking process results in food contamination and poses a substantial health risk. In the present study, the leaching of some toxic and potentially toxic metals from cooking utensils into different solutions and food was investigated. A preliminary survey indicated that the majority of individuals tend to use aluminum cookware due to its affordability, overlooking the potential health risks associated with these inexpensive and lower-quality cooking utensils. XRF analysis revealed that aluminum, steel, and copper cookware had K, Ca, Pb, Cd, Ni, V, Sn Mo, Zn, Bi, and Tb as contaminants. In addition, aluminum (3.2 ± 0.25 to 4.64 ± 0.20 g/kg) and copper cookware (2.90 ± 0.12 g/kg) were highly contaminated with lead. The time and pH-dependent study revealed that leaching of metals (Al, Pb, Ni, Cr, Cd, Cu, and Fe, etc.) into food was predominantly from anodized and non-anodized aluminum cookware. More metal leaching was observed from new aluminum cookware compared to old. Acidic food was found to cause more metals to leach during cooking. Blood metal analysis of the local population revealed the presence of high concentrations of Al, Pb, Cd, and Ni. In conclusion, leaching of toxic or potentially toxic metals from cookware into food, especially from anodized and non-anodized aluminum cookware, poses a potential public health risk. Practical applications: Cooking utensils are routinely used for the preparation of food. However, the harmful impact posed by these essential items is largely unknown. The current research briefly explains the toxic metals leaching from cookware in a pH-dependent manner and leaves a message to the public, especially in developing countries like Pakistan, regarding the type of cookware suitable for cooking purposes.