Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 30(34): 345101, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31048566

RESUMO

Membrane constriction and associated scission by proteins and nano structures are crucial to many processes in cellular and synthetic biology. We report mechanical constriction of vesicles by rings of adsorbed Janus nanoparticles that represent synthetic nano structures and mimic contractile proteins, and by aggregates of curved crescents that mimic scaffold proteins. Membrane energetics from Monte Carlo simulations and simulated annealing of the elastic membrane model confirms spontaneous vesicle constriction by aggregates of sufficiently-curved crescents of various lengths and by rings of Janus nanoparticles with a variety of ring lengths, particle sizes, and particle area fractions. We show that shorter rings of smaller particles with higher area fractions reinforce the constriction by increasing the energetic drive towards the constricted vesicle with smaller constriction radius. We demonstrate that vesicle constriction by crescent aggregates strongly depends on the crescent curvature. In contrast to aggregates of sufficiently-curved crescents that are capable of inducing full vesicle constriction, those of near flat crescents with negligible curvature leave the vesicle unconstricted. Our results offer promising perspectives for designing membrane-constricting nano structures such as nanoparticle aggregates and clusters of synthetic curved proteins such as DNA origami scaffolds with applications in synthetic biology. Our findings reveal the significant contribution of highly-curved F-BAR domains to cell division and explain how contractile protein rings such as dynamin GTPase, actomyosin rings, and endosomal sorting complexes required for transport constrict the membrane.


Assuntos
Nanopartículas/química , Proteínas/química , DNA/química , Método de Monte Carlo , Proteínas/metabolismo
2.
Nano Lett ; 18(2): 1259-1263, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29281291

RESUMO

Besides direct particle-particle interactions, nanoparticles adsorbed to biomembranes experience indirect interactions that are mediated by the membrane curvature arising from particle adsorption. In this Letter, we show that the curvature-mediated interactions of adsorbed Janus particles depend on the initial curvature of the membrane prior to adsorption, that is, on whether the membrane initially bulges toward or away from the particles in our simulations. The curvature-mediated interaction can be strongly attractive for Janus particles adsorbed to the outside of a membrane vesicle, which initially bulges away from the particles. For Janus particles adsorbed to the vesicle inside, in contrast, the curvature-mediated interactions are repulsive. We find that the area fraction of the adhesive Janus particle surface is an important control parameter for the curvature-mediated interaction and assembly of the particles, besides the initial membrane curvature.

3.
PLoS Comput Biol ; 13(10): e1005817, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29065154

RESUMO

Autophagy is a physiological process for the recycling and degradation of cellular materials. Forming the autophagosome from the phagophore, a cup-shaped double-membrane vesicle, is a critical step in autophagy. The origin of the cup shape of the phagophore is poorly understood. In yeast, fusion of a small number of Atg9-containing vesicles is considered a key step in autophagosome biogenesis, aided by Atg1 complexes (ULK1 in mammals) localized at the preautophagosomal structure (PAS). In particular, the S-shaped Atg17-Atg31-Atg29 subcomplex of Atg1 is critical for phagophore nucleation at the PAS. To study this process, we simulated membrane remodeling processes in the presence and absence of membrane associated Atg17. We show that at least three vesicles need to fuse to induce the phagophore shape, consistent with experimental observations. However, fusion alone is not sufficient. Interactions with 34-nm long, S-shaped Atg17 complexes are required to overcome a substantial kinetic barrier in the transition to the cup-shaped phagophore. Our finding rationalizes the recruitment of Atg17 complexes to the yeast PAS, and their unusual shape. In control simulations without Atg17, with weakly binding Atg17, or with straight instead of S-shaped Atg17, the membrane shape transition did not occur. We confirm the critical role of Atg17-membrane interactions experimentally by showing that mutations of putative membrane interaction sites result in reduction or loss of autophagic activity in yeast. Fusion of a small number of vesicles followed by Atg17-guided membrane shape-remodeling thus emerges as a viable route to phagophore formation.


Assuntos
Autofagossomos/química , Autofagossomos/ultraestrutura , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/ultraestrutura , Autofagia , Membrana Celular/química , Membrana Celular/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Sítios de Ligação , Simulação por Computador , Fluidez de Membrana , Fusão de Membrana , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
4.
Soft Matter ; 12(2): 581-7, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26506073

RESUMO

Cellular internalization of nanoparticles requires the full wrapping of the nanoparticles by the cell membrane. This wrapping process can occur spontaneously if the adhesive interactions between the nanoparticles and the membranes are sufficiently strong to compensate for the cost of membrane bending. In this article, we show that the membrane curvature prior to wrapping plays a key role for the wrapping process, besides the size and shape of the nanoparticles that have been investigated in recent years. For membrane segments that initially bulge away from nanoparticles by having a mean curvature of the same sign as the mean curvature of the particle surface, we find strongly stable partially wrapped states that can prevent full wrapping. For membrane segments that initially bulge towards the nanoparticles, in contrast, partially wrapped states can constitute a significant energetic barrier for the wrapping process.


Assuntos
Membrana Celular/metabolismo , Fenômenos Mecânicos , Nanopartículas/metabolismo , Transporte Biológico , Fenômenos Biomecânicos , Modelos Biológicos
5.
Phys Rev Lett ; 109(18): 188102, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215335

RESUMO

How nanoparticles interact with biomembranes is central for understanding their bioactivity. In this Letter, we report novel tubular membrane structures induced by adsorbed spherical nanoparticles, which we obtain from energy minimization. The membrane tubules enclose linear aggregates of particles and protrude into the vesicles. The high stability of the particle-filled tubules implies strongly attractive, membrane-mediated interactions between the particles. The tubular structures may provide a new route to encapsulate nanoparticles reversibly in vesicles.


Assuntos
Membranas/química , Modelos Químicos , Nanopartículas/química , Conformação Molecular , Método de Monte Carlo , Termodinâmica
6.
J Chem Phys ; 134(8): 085106, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21361561

RESUMO

We carry out a coarse-grained molecular dynamics simulation of phospholipid vesicles with transmembrane proteins. We measure the mean and Gaussian curvatures of our protein-embedded vesicles and quantitatively show how protein clusters change the shapes of their host vesicles. The effects of depletion force and vesiculation on protein clustering are also investigated. By increasing the protein concentration, clusters are fragmented to smaller bundles, which are then redistributed to form more symmetric structures corresponding to lower bending energies. Big clusters and highly aspherical vesicles cannot be formed when the fraction of protein to lipid molecules is large.


Assuntos
Lipossomos/química , Proteínas de Membrana/química , Fosfolipídeos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular
7.
J Chem Phys ; 132(2): 024702, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20095689

RESUMO

Macroscale experiments show that a train of two immiscible liquid drops, a bislug, can spontaneously move in a capillary tube because of surface tension asymmetries. We use molecular dynamics simulation of Lennard-Jones fluids to demonstrate this phenomenon for NVT ensembles in submicron tubes. We deliberately tune the strength of intermolecular forces and control the velocity of bislug in different wetting and viscosity conditions. We compute the velocity profile of particles across the tube and explain the origin of deviations from the classical parabolae. We show that the self-generated molecular flow resembles the Poiseuille law when the ratio of the tube radius to its length is less than a critical value.

8.
Science ; 362(6421): 1423-1428, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30573630

RESUMO

The endosomal sorting complexes required for transport (ESCRTs) catalyze reverse-topology scission from the inner face of membrane necks in HIV budding, multivesicular endosome biogenesis, cytokinesis, and other pathways. We encapsulated ESCRT-III subunits Snf7, Vps24, and Vps2 and the AAA+ ATPase (adenosine triphosphatase) Vps4 in giant vesicles from which membrane nanotubes reflecting the correct topology of scission could be pulled. Upon ATP release by photo-uncaging, this system generated forces within the nanotubes that led to membrane scission in a manner dependent upon Vps4 catalytic activity and Vps4 coupling to the ESCRT-III proteins. Imaging of scission revealed Snf7 and Vps4 puncta within nanotubes whose presence followed ATP release, correlated with force generation and nanotube constriction, and preceded scission. These observations directly verify long-standing predictions that ATP-hydrolyzing assemblies of ESCRT-III and Vps4 sever membranes.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Biocatálise , Membrana Celular/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Hidrólise , Nanotubos , Proteínas de Saccharomyces cerevisiae/química , Lipossomas Unilamelares
9.
ACS Nano ; 11(9): 9558-9565, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28873296

RESUMO

Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures.


Assuntos
Lipídeos de Membrana/química , Nanotubos/química , Simulação de Dinâmica Molecular , Método de Monte Carlo , Nanotecnologia/métodos , Nanotubos/ultraestrutura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA