Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 67(1): 159-170, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28718980

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, mainly because of its poor prognosis. A valid mechanism-based prognostic biomarker is urgently needed. γ-hydroxy-1,N2 -propanodeoxyguanosine (γ-OHPdG) is an endogenously formed mutagenic DNA adduct derived from lipid peroxidation. We examined the relationship of γ-OHPdG with hepatocarcinogenesis in two animal models and its potential role as a prognostic biomarker for recurrence in HCC patients. Bioassays were conducted in xeroderma pigmentosum group A knockout mice and diethylnitrosamine-injected mice, both prone to HCC development. γ-OHPdG levels in the livers of these animals were determined. The effects of antioxidant treatments on γ-OHPdG and hepatocarcinogenesis were examined. Using two independent sets of HCC specimens from patients, we examined the relationship between γ-OHPdG and survival or recurrence-free survival. γ-OHPdG levels in liver DNA showed an age-dependent increase and consistently correlated with HCC development in all three animal models. Theaphenon E treatment significantly decreased γ-OHPdG levels in the liver DNA of xeroderma pigmentosum group A knockout mice and remarkably reduced HCC incidence in these mice to 14% from 100% in the controls. It also effectively inhibited HCC development in the diethylnitrosamine-injected mice. Using clinical samples from two groups of patients, our study revealed that higher levels of γ-OHPdG are strongly associated with low survival (P < 0.0001) and low recurrence-free survival (P = 0.007). CONCLUSION: These results support γ-OHPdG as a mechanism-based, biologically relevant biomarker for predicting the risk of HCC and its recurrence. (Hepatology 2018;67:159-170).


Assuntos
Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/prevenção & controle , Adutos de DNA/metabolismo , Dietilnitrosamina/farmacologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/prevenção & controle , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Modelos Animais de Doenças , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Valores de Referência , Taxa de Sobrevida
2.
Nucleic Acids Res ; 42(3): 1772-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24217910

RESUMO

Mouse embryo fibroblasts (MEFs) are convenient sources for biochemical studies when cell number in mouse embryos is limiting. To derive the imprinting signature of MEFs and potentially detect novel imprinted genes we performed strand- and allele-specific RNA deep sequencing. We used sequenom allelotyping in embryo and adult organs to verify parental allele-specific expression. Thirty-two known ubiquitously imprinted genes displayed correct parental allele-specific transcripts in MEFs. Our analysis did not reveal any novel imprinted genes, but detected extended parental allele-specific transcripts in several known imprinted domains: maternal allele-specific transcripts downstream of Grb10 and downstream of Meg3, Rtl1as and Rian in the Dlk1-Dio3 cluster, an imprinted domain implicated in development and pluripotency. We detected paternal allele-specific transcripts downstream of Nespas, Peg3, Peg12 and Snurf/Snrpn. These imprinted transcript extensions were not unique to MEFs, but were also present in other somatic cells. The 5' end points of the imprinted transcript extensions did not carry opposing chromatin marks or parental allele-specific DNA methylation, suggesting that their parental allele-specific transcription is under the control of the extended imprinted genes. Based on the imprinting signature of MEFs, these cells provide valid models for understanding the biochemical aspects of genomic imprinting.


Assuntos
Impressão Genômica , Alelos , Animais , Células Cultivadas , Cruzamentos Genéticos , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Análise de Sequência de RNA , Transcrição Gênica
3.
JACC Basic Transl Sci ; 9(6): 733-750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39070276

RESUMO

Heart failure (HF) with left ventricular diastolic dysfunction is a growing global concern. This study evaluated myocardial oxidized nicotinamide adenine dinucleotide (NAD+) levels in human systolic and diastolic HF and in a murine model of HF with preserved ejection fraction, exploring NAD+ repletion as therapy. We quantified myocardial NAD+ and nicotinamide phosphoribosyltransferase levels, assessing restoration with nicotinamide riboside (NR). Findings show significant NAD+ and nicotinamide phosphoribosyltransferase depletion in human diastolic HF myocardium, but NR successfully restored NAD+ levels. In murine HF with preserved ejection fraction, NR as preventive and therapeutic intervention improved metabolic and antioxidant profiles. This study underscores NAD+ repletion's potential in diastolic HF management.

4.
Genome Biol ; 17(1): 154, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27411809

RESUMO

In a recent paper, we described our efforts in search for evidence supporting epigenetic transgenerational inheritance caused by endocrine disrupter chemicals. One aspect of our study was to compare genome-wide DNA methylation changes in the vinclozolin-exposed fetal male germ cells (n = 3) to control samples (n = 3), their counterparts in the next, unexposed, generation (n = 3 + 3) and also in adult spermatozoa (n = 2 + 2) in both generations. We reported finding zero common hits in the intersection of these four comparisons. In our interpretation, this result did not support the notion that DNA methylation provides a mechanism for a vinclozolin-induced transgenerational male infertility phenotype. In response to criticism by Guerrero-Bosagna regarding our statistical power in the above study, here we provide power calculations to clarify the statistical power of our study and to show the validity of our conclusions. We also explain here how our data is misinterpreted in the commentary by Guerrero-Bosagna by leaving out important data points from consideration.Please see related Correspondence article: xxx (13059_2016_982) and related Research article: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0619-z.


Assuntos
Metilação de DNA/genética , Disruptores Endócrinos/toxicidade , Epigênese Genética , Oxazóis/toxicidade , Metilação de DNA/efeitos dos fármacos , Células Germinativas Embrionárias/efeitos dos fármacos , Células Germinativas Embrionárias/metabolismo , Humanos , Masculino , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia
5.
Genome Biol ; 16: 59, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25853433

RESUMO

BACKGROUND: Exposure to environmental endocrine-disrupting chemicals during pregnancy reportedly causes transgenerationally inherited reproductive defects. We hypothesized that to affect the grandchild, endocrine-disrupting chemicals must alter the epigenome of the germ cells of the in utero-exposed G1 male fetus. Additionally, to affect the great-grandchild, the aberration must persist in the germ cells of the unexposed G2 grandchild. RESULTS: Here, we treat gestating female mice with vinclozolin, bisphenol A, or di-(2-ethylhexyl)phthalate during the time when global de novo DNA methylation and imprint establishment occurs in the germ cells of the G1 male fetus. We map genome-wide features in purified G1 and G2 prospermatogonia, in order to detect immediate and persistent epigenetic aberrations, respectively. We detect changes in transcription and methylation in the G1 germline immediately after endocrine-disrupting chemicals exposure, but changes do not persist into the G2 germline. Additional analysis of genomic imprints shows no persistent aberrations in DNA methylation at the differentially methylated regions of imprinted genes between the G1 and G2 prospermatogonia, or in the allele-specific transcription of imprinted genes between the G2 and G3 soma. CONCLUSIONS: Our results suggest that endocrine-disrupting chemicals exert direct epigenetic effects in exposed fetal germ cells, which are corrected by reprogramming events in the next generation. Avoiding transgenerational inheritance of environmentally-caused epigenetic aberrations may have played an evolutionary role in the development of dual waves of global epigenome reprogramming in mammals.


Assuntos
Reprogramação Celular/genética , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Impressão Genômica/efeitos dos fármacos , Animais , Compostos Benzidrílicos/administração & dosagem , Reprogramação Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Disruptores Endócrinos/administração & dosagem , Feminino , Impressão Genômica/genética , Células Germinativas/efeitos dos fármacos , Masculino , Camundongos , Oxazóis/administração & dosagem , Fenóis/administração & dosagem , Gravidez , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA