Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Toxicol ; 38(6): 1405-1419, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988289

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) remains an unsolved puzzle in medical circles. Naringenin (NAR) is a flavonoid with cardioprotective potential. The purpose of this article was to discuss the protective mechanism of NAR in MIRI by regulating macrophage polarization. The MIRI mouse model was established and perfused with NAR before surgery. In the in vitro experiment, macrophages RAW264.7 were treated with lipopolysaccharide to induce M1 polarization after pretreatment with NAR. Rescue experiments were carried out to validate the functions of transcription factor EB (TFEB), the NLR pyrin domain containing 3 (NLRP3) inflammasome, and autophagy in macrophage polarization. NAR reduced histopathological injury and infarction of myocardial tissues in MIRI mice, inhibited M1 polarization and promoted M2 polarization of macrophages, diminished levels of pro-inflammatory factors, and augmented levels of anti-inflammatory factors. NAR facilitated TFEB nuclear translocation and inhibited the NLRP3 inflammasome pathway. Silencing TFEB or Nigericin partly nullified the effect of NAR on macrophage polarization. NAR increased autophagosome formation, autophagy flux, and autophagy level. Autophagy inhibitor 3-methyladenine partly invalidated the inhibition of NAR on the NLRP3 inflammasome pathway. In animal experiments, NAR protected MIRI mice through the TFEB-autophagy-NLRP3 inflammasome pathway. Collectively, NAR inhibited NLRP3 inflammasome activation and facilitated M2 macrophage polarization by stimulating TFEB nuclear translocation, thus protecting against MIRI.


Assuntos
Flavanonas , Inflamassomos , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Inflamassomos/metabolismo , Macrófagos , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Transcrição/metabolismo , Flavanonas/farmacologia
2.
J Environ Sci (China) ; 100: 43-50, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279052

RESUMO

During the aging process, ferrihydrite was transformed into mineral mixtures composed of different proportions of ferrihydrite, goethite, lepidocrocite and hematite. Such a transformation may affect the fixed ability of arsenic. In this study, the stability of Fe-As composites formed with As(V) and the minerals aged for 0, 1, 4, 10 and 30 days of ferrihydrite were systematically examined, and the effects of molar of ratios Fe/As were also clarified using kinetic methods combined with multiple spectroscopic techniques. The results indicated that As(V) was rapidly adsorbed on minerals during the initial polymerization process, which delayed both the ferrihydrite conversion and the hematite formation. When the Fe/As molar ratio was 1.875 and 5.66, the As(V) adsorbed by ferrihydrite began to release after 6 hr and 12 hr, respectively. The corresponding release amounts of As(V) were 0.55 g/L and 0.07 g/L, and the adsorption rates were 92.43% and 97.50% at 60 days, respectively. However, the As(V) adsorbed by the transformation products aged for 30 days of ferrihydrite began to release after adsorbed 30 days. The corresponding release amounts of As(V) were 0.25 g/L and 0.03 g/L, and the adsorption rates were 84.23% and 92.18% after adsorbed 60 days, for the Fe/As=1.875 and 5.66, respectively. Overall, the combination of As(V) with ferrihydrite and aged products transformed from a thermodynamically metastable phase to a dynamically stable state within a certain duration. Moreover, the aging process of ferrihydrite reduced the sorption ability of arsenate by iron (hydr)oxide but enhanced the stability of the Fe-As composites.


Assuntos
Arsênio , Compostos Férricos , Adsorção , Idoso , Humanos , Ferro , Cinética , Minerais
3.
Molecules ; 24(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003503

RESUMO

Despite low fertility and content of organic carbon in albic black soil, grains are grown in this type of soil in the northeast plain of China in order to find ways to improve the soil's fertility and crop production. We carried out pot experiments of maize applied with one of three different treatments of fulvic acids (FA) derived from different parent materials: Plant-derived solid (PDSF), mineral-derived liquid (MDLF), and plant-derived liquid (PDLF) applied at respective rates of 2.5, 5, and 5 g kg-1 as well as a control applied at 0 g kg-1. The results showed that soil organic carbon and light fraction C was greater by 29% to 21% and 38% to 21%, respectively, among the treatments compared to that of the control. Similarly, available N content was significantly greater in the PDLF treatment, and P content was also significantly greater in the PDSF treatment. In contrast, available K and extractable Mg contents were lower, as well as organic-inorganic degree complexes and organic-inorganic composites in the PDSF, MDLF, and PDLF treatments compared with those of the control. Further results showed that MDLF and PDLF Fulvic acids (FA) accelerated plant growth, while PDSF limited plant growth. Our study provides empirical evidence that addition of fulvic acid from MDLF and PDLF had more positive effects on soil properties and plant growth than fulvic acid from PDSF. This investigation suggests that application of fulvic acid in liquid form can improve nutrient availability and affect other important chemical, biological, and physical properties of soils.


Assuntos
Benzopiranos/análise , Solo/química , Cálcio/análise , Carbono/análise , China , Magnésio/análise , Compostos Orgânicos/análise , Desenvolvimento Vegetal , Plantas/química
4.
Curr Microbiol ; 74(9): 1108-1113, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28676887

RESUMO

Bacteria capable of arsenate [As(V)] reduction can be used for remediation of As-contaminated soils via bio-extraction. In this study, As-resistant bacteria were isolated and their abilities to resist and reduce As(V) as well as As bio-extracted from soils naturally contaminated with As were studied. The results indicated that three isolates (2-2, 4-3, and 8-5) showed greater abilities to resist As(V) than other isolates. When the isolates were exposed to 10 mg L-1 As(V), As(V) contents decreased, while arsenite [As(III)] increased over time. In comparison, isolates 2-2 and 4-3 completely reduced As(V) into As(III) within 6 h. According to phylogenetic analysis of the 16S rRNA gene, isolates 2-2, 4-3, and 8-5 were most closely related to Pseudomonas taiwanensis, P. monteilii, and Pseudomonas sp., respectively. Total As contents in soils significantly (P < 0.05) decreased after bacterial extraction. The maximum As removal of 21.6% was observed following inoculation of isolate 2-2 into soil-1. Bacterial extraction weakened the binding between As and the soil solid phase, resulting in As removal from the soil.


Assuntos
Arseniatos/metabolismo , Arseniatos/toxicidade , Farmacorresistência Bacteriana , Pseudomonas/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Solo/química , Arseniatos/análise , Arsenitos/análise , Arsenitos/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Oxirredução , Filogenia , Pseudomonas/classificação , Pseudomonas/efeitos dos fármacos , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo/análise
5.
Nanotechnology ; 26(31): 315701, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26177713

RESUMO

Multifunctional nanocomposites combining imaging and therapeutic functions have great potential for cancer diagnosis and therapy. In this work, we developed a novel theranostic agent based on hollow gold nanospheres (HGNs) and superparamagnetic iron oxide nanoparticles (SPIO). Taking advantage of the excellent magnetic properties of SPIO and strong near-infrared (NIR) absorption property of HGNs, such nanocomposites were applied to targeted magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) of cancer cells. In vitro results demonstrated they displayed significant contrast enhancement for T2-weighted MRI and strong PAI signal enhancement. Simultaneously, the nanocomposites exhibited a high photothermal effect under the irradiation of the near-infrared laser and can be used as efficient photothermal therapy (PTT) agents for selective killing of cancer cells. All these results indicated that such nanocomposites combined with MRI-PAI and PTT functionality can have great potential for effective cancer diagnosis and therapy.


Assuntos
Meios de Contraste , Terapia com Luz de Baixa Intensidade/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Nanosferas/uso terapêutico , Neoplasias/patologia , Técnicas Fotoacústicas/instrumentação , Ouro/química , Células HeLa , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Células MCF-7 , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/ultraestrutura , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanocompostos/ultraestrutura , Nanosferas/química , Nanosferas/ultraestrutura , Neoplasias/terapia , Tamanho da Partícula , Técnicas Fotoacústicas/métodos
6.
Ying Yong Sheng Tai Xue Bao ; 32(2): 564-570, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33650366

RESUMO

To explore the mechanism of exogenous organic materials enhancing soil organic carbon and soil fertility, based on a long-term experiment located in Hengyang Red Soil Experimental Station, we examined the effects of winter green manure and straw returning patterns (CK, winter fallow; MV, winter Chinese milk vetch; S, early-season rice straw total returning; DS, early-season and late-season rice straw total returning; SMV, winter Chinese milk vetch + early-season rice straw total returning; DSMV, winter Chinese milk vetch + early-season and late-season rice straw total returning) on soil aggregates and organic functional groups. The results showed that the proportion of super aggregates (>2 mm) and macroaggregates (0.25-2 mm) in double cropping rice soil was the highest with a ratio of about 72.1%-81.8%, and the organic carbon content in the two kinds of aggregates was as high as 12.1-20.7 g·kg-1, accounting for 22.7%-59.0% of the total organic carbon. The main organic functional group in paddy soil was polysaccharides, followed by aliphatic carbon and aromatic carbon. The abundance of all those groups was affected by winter Chinese milk vetch growing and straw returning. Compared with other treatments, DSMV significantly increased the proportion of super aggregates (>2 mm) and macroaggregates (0.25-2 mm) and favored the accumulation of inert carbon such as aromatic carbon in the two kinds of aggregates. DSMV could enhance the stability of soil aggregates and organic matter, which had high potential in the real agricultural production.


Assuntos
Oryza , Solo , Agricultura , Carbono , Esterco , Estações do Ano
7.
Curr Microbiol ; 61(4): 261-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20155358

RESUMO

Some fungi are able to control and remediate arsenic (As)-contaminated soil, sediment, or water. Here, we investigate potential accumulation and volatilisation of As by three fungi strains. Results indicated that the highest level of As was accumulated by Penicillin janthinellum with 39.54 µg after 10 days in the culture system amended with 2,500 µg As(V), which represents 50 mg/l As. Fusarium oxysporum showed the highest amount of volatilised As with 304.06 µg after 15 days. The As content in the treated system (filter paper + As + fungi) was significantly higher than that in the control (filter paper + As; filter paper + fungi; filter paper). Trichoderma asperellum and F. oxysporum showed superior abilities for the absorption of extracellular As and accumulation of intracellular As, which accounted for 82.2 and 63.4% of the total accumulated As, respectively. However, P. janthinellum presented an equal distribution of intracellular and extracellular As. Scanning electron microscope (SEM) analysis suggested that little impact on mycelium growth of the three fungal strains was seen after exposure to 50 mg/l As(V) for 5 days, while the growth of fungi in the control was inhibited. The present results demonstrate that P. janthinellum, F. oxysporum, and T. asperellum would be expected to tackle As-contaminated environments.


Assuntos
Arsênio/metabolismo , Fusarium/metabolismo , Penicillium/metabolismo , Trichoderma/metabolismo , Agricultura , China , Poluentes Ambientais/metabolismo , Microscopia Eletrônica de Varredura , Micélio/metabolismo , Filogenia , RNA Ribossômico 18S , Microbiologia do Solo , Poluentes do Solo/metabolismo , Poluentes da Água/metabolismo
8.
Plants (Basel) ; 9(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041329

RESUMO

Fulvic acids (FAs) improve the structure and fertility of soils with varying textures and also play a crucial role in increasing crop production. The pot experiment was carried out using wheat grown on three soils with a silty clay, sandy loam, and clay loam texture, respectively. The soils were treated with FAs derived from plant and mineral materials. Plant-derived solid (PSFA), mineral-derived liquid (NLFA), and plant-derived liquid (PLFA) were applied at a rate of 2.5, 5, and 5 g kg-1 and control applied at 0 g kg-1. The results showed that in treated soils, the heavy fraction C was higher by 10%-60%, and the light fraction C increased by 30%-60%. Similarly, the available N content significantly increased in treated soils by 30%-70% and the available K content increased by 20%-45%, while P content significantly increased by 80%-90% in Aridisols and Vertisols and decreased by 60%-70% in Mollisols. In contrast, for P, the organic-inorganic compounds were greater in Aridisols and Vertisols and lower in Mollisols. However, organic-inorganic composites decreased in Vertisols relative to the other two soils. Further results showed that PSFA and NLFA accelerated the plant growth parameters in Mollisols and Aridisols, respectively. Our study demonstrates that the application of PSFA and NLFA had a positive effect on the physical and chemical properties and plant growth characteristics of Mollisol and Vertisol soils. Moreover, the application of solid-state FA yields better results in Mollisols. However, liquid FA increases the nutrient availability and the effects on the chemical, biological, and physical properties of Aridisol and Vertisol soils.

9.
World J Clin Cases ; 8(14): 3130-3135, 2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32775396

RESUMO

BACKGROUND: Bezoars can be found anywhere in the gastrointestinal tract. Esophageal bezoars are rare. Esophageal bezoars are classified as either primary or secondary. It is rarely reported that secondary esophageal bezoars caused by reverse migration from the stomach lead to acute esophageal obstruction. Guidelines recommend urgent upper endoscopy (within 24 h) for these impactions without complete esophageal obstruction and emergency endoscopy (within 6 h) for those with complete esophageal obstruction. Gastroscopy is regarded as the mainstay for the diagnosis and treatment of esophageal bezoars. CASE SUMMARY: A 59-year-old man was hospitalized due to nausea, vomiting and diarrhea for 2 d and sudden retrosternal pain and dysphagia for 10 h. He had a history of type 2 diabetes mellitus for 9 years. Computed tomography revealed dilated lower esophagus, thickening of the esophageal wall, a mass-like lesion with a flocculent high-density shadow and gas bubbles in the esophageal lumen. On gastroscopy, immovable brown bezoars were found in the lower esophagus, which led to esophageal obstruction. Endoscopic fragmentation was successful, and there were no complications. The symptoms of retrosternal pain and dysphagia disappeared after treatment. Mucosal superficial ulcers were observed in the lower esophagus. Multiple biopsy specimens from the lower esophagus revealed nonspecific findings. The patient remained asymptomatic, and follow-up gastroscopy 1 wk after endoscopic fragmentation showed no evidence of bezoars in the esophagus or the stomach. CONCLUSION: Acute esophageal obstruction caused by bezoars reversed migration from the stomach is rare. Endoscopic fragmentation is safe, effective and minimally invasive and should be considered as the first-line therapeutic modality.

10.
J Hazard Mater ; 388: 121795, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31818673

RESUMO

The effect of dissolved organic matter (DOM), derived from composted pig manure or rice straw, on arsenic methylation and subsequent biovolatilization in paddy soils was investigated. Arsine production following pig manure DOM application was 2.7- and 9.6-fold higher than that of soils treated with rice straw DOM and the control, respectively. Trimethylarsine was the dominant arsine at 54 %, followed by dimethylarsine at 22 %, arsine at 21 %, and monomethylarsine at 3 %. The copy numbers of the total and As-methylating bacteria were significantly enhanced in paddy soils treated with DOM. Pig manure DOM altered soil bacterial profile by increasing the OTU number of As methylation-inducing bacteria, such as Proteobacteria, Bacteroidetes, Geobacter, Sphingomonas, Streptomyces, and Rhodopseudomonas, thereby promoting As volatilization and methylation in paddy soils. The higher relative content of alkyl-C, N-alkyl C, and carboxyl-C in pig manure DOM was responsible for the increase in total and arsM-carrying bacteria in paddy soils, leading to enhanced As methylation. These observations will promote a better understanding of the role of DOM in mediating As methylation and volatilization, along with how organic fertilization affects straighthead disorder of rice, a condition caused by methylated arsenic species.

11.
Ying Yong Sheng Tai Xue Bao ; 31(8): 2740-2748, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34494797

RESUMO

To acquire a feasible method for a rapid comparison of the cadmium (Cd) accumulation capacities of different leafy vegetables, using substrate cultivation with different contents of Cd and cultivation time, we compared the observed Cd accumulation capacity with these obtained in the field. The results showed that the Cd content and bio-concentration factors (BCFs) value in the aboveground tissue of leafy vegetable varied significantly with Cd content and cultivation time. Multi-factor analysis of variance showed that vegetable variety, cultivation time, Cd content in substrate and their interaction had significant effects on BCFs of Cd in leafy vegetable. Leafy vegetable variety was the dominant factor affecting BCFs of Cd in leafy vegetable and controlled its absolute level. When Cd content in the substrate reached 1.0 mg·kg-1 with a cultivation of 10 days, the correlation coefficient of Cd BCFs between the substrate cultivation and field experiments was the highest, with a R2 value of 0.90. The results of cluster analysis and one-way ANOVA had the highest consistence with the field results. Comparatively, the substrate cultivation with Cd content of 1.0 mg·kg-1 and a cultivation of 10 days showed a good reproducibility and stability in reflecting the difference in Cd accumulation capacities of different leafy vegetable varieties. The Cd-rich substrate cultivation could be used to screen the vegetables with low Cd accumulation and also would promote the field application of the vegetables with low Cd accumulation in the Cd-contaminated area of China.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , China , Reprodutibilidade dos Testes , Solo , Poluentes do Solo/análise , Verduras
12.
Materials (Basel) ; 12(17)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470551

RESUMO

Concrete in practical applications has to inevitably suffer various impact loads. Recent research indicates that the hybrid fiber reinforced concrete (FRC) has better dynamic mechanical properties compared to the mono FRC under impact loading. Based on macro-experimentation and micro-observation, the impact behavior of the hybrid basalt-macro synthetic polypropylene FRC (BSFRC) was investigated by using ∅74 mm SHPB, SEM, and EDS. The effects of fiber hybridization, strain rate, and w/c ratio were analyzed simultaneously. The results show that the dynamic mechanical properties of BSFRC are strain-rate sensitive. Both basalt and macro synthetic polypropylene fibers (BF, SF) have a strengthening and toughening effect on concrete. Their hybridization has a similar enhancement effect but the impact toughness of concrete is further improved and the best hybrid ratio is 0.05%(BF)-0.25%(SF). BSFRC with higher w/c ratio has a higher strain rate effect while the fiber hybridization effect is weakened. Besides, the proposed constitutive model can well describe the impact behavior of BSFRC. The hydration of cement in the interface transition zones is lower with more Calcium Silicate Hydrate and less Ca ( OH ) 2 than that in the common mortar. However, the addition of BF and SF contributes to the hydration of cement and improves the performance of concrete eventually.

13.
Environ Sci Pollut Res Int ; 25(15): 15080-15088, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29557040

RESUMO

This study investigated arsenic (As) availability and uptake by rape (Brassica campestris L.) during two harvest periods of carboxymethyl cellulose (CMC)-stabilized ferrihydrite (HFO) nanoparticles for in situ treatment As-contaminated soil. Application of modified HFO nanoparticles in soils not only provided a larger specific surface area but also markedly improved stability against aggregation and recrystallization. For 90-day incubation, bare HFO particles were gradually converted to the crystalline Fe(III) oxide form, although this was not observed for the 0.5% CMC-HFO nanoparticles. CMC-modified HFO nanoparticles could be more effective in lowering the As uptake by rape and available As in soils than bare HFO particles. Compared the control without amendments, As contents in rape and available As in soils decreased 69.7 and 59.0%, respectively, during the second harvest when soils were amended with 0.5% HFO nanoparticles. And the soil-solution distribution coefficient (K d ) increased by 2.6 and 2.8 times for the first and second harvest. Furthermore, the ratio of amorphous and free Fe-oxides (Feo/Fed) showed significant negative linear correlations with Asplant (P < 0.01), available As (P < 0.05), and nonspecifically sorbed As in soil (P < 0.01). In contrast, Feo/Fed was positively correlated with K d and amorphous crystalline Fe/Al oxide-sorbed As, which suggests that a larger amount of As is associated with Fe(hydr)oxide in the amorphous phase or smaller particles.


Assuntos
Arsênio/análise , Brassica/crescimento & desenvolvimento , Carboximetilcelulose Sódica/química , Compostos Férricos/química , Nanopartículas/química , Poluentes do Solo/análise , Arsênio/metabolismo , Disponibilidade Biológica , Brassica/metabolismo , China , Recuperação e Remediação Ambiental , Solo/química , Poluentes do Solo/metabolismo
14.
Environ Sci Pollut Res Int ; 25(24): 24125-24134, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29948691

RESUMO

Arsenic (As) accumulation in agricultural soils is prone to crop uptake, posing risk to human health. Passivation shows potential to inactivate soil labile As and lower crop As uptake but often contributes little to improving the microbiota in As-contaminated soils. Here, the combined addition of ferrihydrite and Trichoderma asperellum SM-12F1 as a potential future application for remediation of As-contaminated soil was studied via pot experiments. The results indicated that, compared with the control treatment, the combined addition of ferrihydrite and T. asperellum SM-12F1 significantly increased water spinach shoot and root biomass by 134 and 138%, respectively, and lowered As content in shoot and root by 37 and 34%, respectively. Soil available As decreased by 40% after the combined addition. The variances in soil pH and As fractionation and speciation were responsible for the changes in soil As availability. Importantly, the combined addition greatly increased the total phospholipid fatty acids (PLFAs) and gram-positive (G+), gram-negative (G-), actinobacterial, bacterial, fungal PLFAs by 114, 68, 276, 292, 133, and 626%, respectively, compared with the control treatment. Correspondingly, the soil enzyme activities closely associated with carbon, nitrogen, and phosphorus mineralization and antioxidant activity were improved. The combination of ferrihydrite and T. asperellum SM-12F1 in soils did not reduce their independent effects.


Assuntos
Arsênio/farmacocinética , Recuperação e Remediação Ambiental/métodos , Compostos Férricos , Microbiologia do Solo , Poluentes do Solo/farmacocinética , Carbono/metabolismo , Enzimas/metabolismo , Ácidos Graxos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Ipomoea/efeitos dos fármacos , Ipomoea/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Solo/química , Trichoderma/fisiologia
15.
Chemosphere ; 196: 540-547, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29329086

RESUMO

The effect of exogenous phosphate (P, 200 mg⋅kg-1 soil) on the lability and phytoavailability of arsenic (As) was studied using the diffusive gradients in thin films (DGT) technique. Lettuce were grown on the As-amended soils following the stabilization of soil labile As after 90 days incubation. Phosphate (P) application generally facilitated plant growth except one grown on P-sufficient soil. Soil labile As concentration increased in all the soils after P application due to a competition effect. Plant As concentration increased in red soils collected from Hunan Province, while decreases were observed in the other soils. Even though, an overall trend of decrease was obtained in As phytoavailability along with the increase of DGT-measured soil labile P/As molar ratio. The functional equation between P/As and As phytoavailability provided a critical value of 1.7, which could be used as a guidance for rational P fertilization, thus avoiding overfertilization.


Assuntos
Arsênio/análise , Lactuca/crescimento & desenvolvimento , Fosfatos/farmacologia , Poluentes do Solo/análise , Fertilizantes , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Solo
16.
Environ Sci Pollut Res Int ; 25(13): 12876-12882, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29478161

RESUMO

The mobility of arsenic (As) in soil depends on its sorption/desorption processes on soil particles. Plant uptake locally lowers As concentration in soil pore water, which would trigger resupplies of As from soil solid phase. To better understand the fate of As in soil system after its inputs into soil and its subsequent dynamic processes, diffusive gradients in thin films (DGT) technique along with DGT-induced fluxes in soils (DIFS) model were introduced to study the kinetic information of As in soils, including its response time (TC) and resupply rate constant (k-1). To achieve a series of soils with gradient As level, two different types of soils with similar As level (total As in soil JL is 7.4 mg kg-1, while in soil BJ is 6.5 mg kg-1) were collected and amended with exogenous As. Then, DGT deployments were carried out following a period of 90-day soil incubation. The simulated TC values in non-amended soil JL and soil BJ were 0.036 and 0.001 s-1, respectively. The difference may due to the properties of these two soils, including pH values and contents of adsorption materials, such as Fe and Al compounds. After As inputs into soils, the intrinsic rate of As release from the solid phase to the solution phase in As-amended JL soil was much higher than that in non-amended soil. While for soil BJ, a decreasing trend was observed after As spiking. The redistribution of As may responsible for the different variation trends of As kinetics in these two soils after As spiking. The results indicated that the distribution coefficient of As (Kd) in soil was mainly affected by soil Olsen-P content due to an ubiquitous competition between P and As on soil particles.


Assuntos
Arsênio/análise , Modelos Teóricos , Poluentes do Solo/análise , Solo/química , Adsorção , Cinética
17.
Mol Immunol ; 101: 539-549, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30173118

RESUMO

Our previous studies have shown that recombinant human phospholipase D2 (rhPLD2) plays a modulator role on NF-κB and PKC signaling pathways. It also inhibits IL-5-induced inflammatory response in chronic asthmatic guinea pigs. Additionally, increasing evidence also has revealed that the adoptive transfer of induced regulatory T cells (Tregs) may be a therapeutic solution to airway allergic diseases. To investigate the epigenetic, transcriptomic and phenotypic variability of Treg population in an ovalbumin (OVA)-induced airway inflammation model derived from the induction of rhPLD2, OVA-induced asthmatic murine model is used in this study. The lung inflammation, eosinophil infiltration, the differentiation and proliferation of T helper cells and the amplification of Tregs were examined in this mouse model with and without rhPLD2 induction. Our data showed that rhPLD2 administration in asthmatic mice significantly increases CD4+CD25+ Foxp3+ Treg cell numbers and alleviates lung inflammation. The addition of rhPLD2 in vitro enhanced the demethylation of Treg-specificdemethylated region (TSDR) in iTregs, suggesting that rhPLD2 protein may be involved in improving the quality and quantity of Treg cells that eventually significantly reduces lung inflammation in asthmatic murine model. These results suggest that rhPLD2 could have a clinical impact treating patients with allergic airway inflammation via promoting and stabilizing iTreg differentiation and function.


Assuntos
Asma/tratamento farmacológico , Asma/imunologia , Fatores de Transcrição Forkhead/metabolismo , Inflamação/tratamento farmacológico , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Pulmão/patologia , Fosfolipase D/uso terapêutico , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Asma/patologia , Ilhas de CpG/genética , Metilação de DNA/genética , Modelos Animais de Doenças , Eosinófilos/patologia , Humanos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Fosfolipase D/farmacologia , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos
18.
Sci Rep ; 7: 40765, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098196

RESUMO

Hydrous ferric oxide (HFO) is most effective with high treatment capacity on arsenate [As(V)] sorption although its transformation and aggregation nature need further improvement. Here, HFO nanoparticles with carboxymethyl cellulose (CMC) or starch as modifier was synthesized for the purpose of stability improvement and As(V) removal from water. Comparatively, CMC might be the optimum stabilizer for HFO nanoparticles because of more effective physical and chemical stability. The large-pore structure, high surface specific area, and the non-aggregated nature of CMC-HFO lead to increased adsorption sites, and thus high adsorption capacities of As(V) without pre-treatment (355 mg·g-1), which is much greater than those reported in previous studies. Second-order equation and dual-mode isotherm model could be successfully used to interpret the sorption kinetics and isotherms of As(V), respectively. FTIR, XPS and XRD analyses suggested that precipitation and surface complexation were primary mechanisms for As(V) removal by CMC modified HFO nanoparticles. A surface complexation model (SCM) was used to simulate As adsorption over pH 2.5-10.4. The predominant adsorbed arsenate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The immobilized arsenic remained stable when aging for 270 d at room temperature.

19.
Chemosphere ; 187: 404-412, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28863293

RESUMO

Although specific soil properties controlling the arsenic (As) aging process have been studied extensively, few investigations have attempted to determine how soil types influence As bioavailability and fractionations in soils. Nine types of soil were selected from typical grain producing areas in China, and the bioavailability and fractionations of As during aging were measured. Results showed that available As in all soils rapidly decreased in the first 30 days and slowly declined thereafter. In spiked soils, As easily became less available and less toxic in low pH soils compared to high pH soils, demonstrating the importance of soil pH on As availability. Results from fitting kinetic equations revealed that the pseudo-second-order model described the As aging processes well in all soils (R2 = 0.945-0.999, P < 0.01, SE = 0.09-4.25), implying that the mechanism for As aging combined adsorption, external diffusion, and internal diffusion. Fe oxides were more important than Al oxides for determining the As aging rate (|k|). Based on these results, we are the first to propose the approximate aging equilibrium time (T) for As, which was mainly influenced by soil clay content. The shortest time for approximate stabilization of As aging was 28 d in latosol soils (LS), while the longest approximate equilibrium time was 169 d in cinnamon soils (CS). Individual soil properties controlling the variation in different As fractionations further confirmed that the influences of soil types on As aging were the result of the combined effects of soil properties and a time-consuming redistribution process.


Assuntos
Arsênio/análise , Poluentes do Solo/análise , Solo/química , Adsorção , Arsênio/farmacocinética , Disponibilidade Biológica , Fracionamento Químico , China , Difusão , Concentração de Íons de Hidrogênio , Óxidos/análise , Fatores de Tempo
20.
Environ Pollut ; 225: 620-627, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28336093

RESUMO

Microbial methylation and demethylation are central to arsenic's (As) biogeochemical cycling. Here, the transformations of monomethylarsonic acid (MMA(V)) (50 mg L-1) for 15 days in cells of As-methylating fungi, Fusarium oxysporum CZ-8F1, Penicillium janthinellum SM-12F4, and Trichoderma asperellum SM-12F1, were evaluated, and trace concentrations of As(III) and As(V) were observed in fungal cell extracts. Trace amounts of DMA(V) were also detected in MMA(V) and P. janthinellum SM-12F4 incubations. In situ X-ray absorption near edge structure (XANES) indicated that after exposure to MMA(V) (500 mg L-1) for 15 days, 28.6-48.6% of accumulated As in fungal cells was DMA(V), followed by 18.4-30.3% from As(V), 0-28.1% from As(III), and 4.8-28.9% from MMA(V). The concurrent methylation and demethylation of As occurs in fungal cells. Furthermore, a majority of proteins involved in metabolism, transport, ATP activity, biosynthesis, signal transduction, DNA activity, translation, and oxidative stress were upregulated in T. asperellum SM-12F1 cells after MMA(V) exposure compared to As(III), As(V), and DMA(V). The detoxification process of T. asperellum SM-12F1 was As species-specific. Methylenetetrahydrofolate reductase (R7YMH0) donation of a methyl group for S-adenosylmethionine (SAM) generation significantly increased following MMA(V) exposure.


Assuntos
Arsênio/metabolismo , Fungos/metabolismo , Proteoma/metabolismo , Poluentes do Solo/metabolismo , Arsenicais , Ácido Cacodílico , Fusarium/metabolismo , Inativação Metabólica , Metilação , Penicillium/metabolismo , Proteoma/genética , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA