Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Small ; 20(19): e2307975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098446

RESUMO

Electrochemical methanol oxidation reaction (MOR) is regarded as a promising pathway to obtain value-added chemicals and drive cathodic H2 production, while the rational design of catalyst and in-depth understanding of the structure-activity relationship remains challenging. Herein, the ultrathin NiV-LDH (u-NiV-LDH) with abundant defects is successfully synthesized, and the defect-enriched structure is finely determined by X-ray adsorption fine structure etc. When applied for MOR, the as-prepared u-NiV-LDH presents a low potential of 1.41 V versus RHE at 100 mA cm-2, which is much lower than that of bulk NiV-LDH (1.75 V vs RHE) at the same current density. The yield of H2 and formate is 98.2% and 88.1% as its initial over five cycles and the ultrathin structure of u-NiV-LDH can be well maintained. Various operando experiments and theoretical calculations prove that the few-layer stacking structure makes u-NiV-LDH free from the interlayer hydrogen diffusion process and the hydrogen can be directly detached from LDH laminate. Moreover, the abundant surface defects upshift the d-band center of u-NiV-LDH and endow a higher local methanol concentration, resulting in an accelerated dehydrogenation kinetics on u-NiV-LDH. The synergy of the proton detachment from the laminate and the methanol dehydrogenation oxidation contributes to the excellent MOR performance of u-NiV-LDH.

2.
Acc Chem Res ; 56(10): 1213-1227, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126765

RESUMO

ConspectusAs versatile, modular, and strongly coordinating moieties in organometallic compounds, N-heterocyclic carbenes (NHCs) have led to numerous breakthroughs in transition-metal catalysis, main group chemistry, and organocatalysis. In contrast, the chemistry of NHC-based metallosupramolecular assemblies, in which discrete individual components are held together via metal (M)-CNHC bonds, has been underdeveloped. Integrating NHCs into supramolecular assemblies would endow them with some unforeseen functions. However, one of the most critical challenges is seeking an appropriate combination of the rigid CNHC-M-CNHC units with the resulting topologies and applications. Toward this goal, for the last decade we have focused on the development of M-NHC directed toward metallosupramolecular synthesis. This Account aims to summarize our contributions to the application of M-NHC chemistry toward supramolecular synthesis from structural design to postassembly modification (PAM) and their functional applications since integrating NHCs into supramolecular assemblies has garnered much attention among organometallic, photochemical, and supramolecular researchers. While presenting representative examples of NHC-based architectures, we try to illustrate the purposes and concepts behind the systems developed to aid the rational approach to the design and fabrication of complex assemblies and M-NHC-templated photochemical reactions.We present synthetic approaches for new architectures by the rational design of starting NHC precursors, including the poly-NHC-based mechanically interlocked metallacages and the heteroleptic architectures based on electronic complementary and self-sorting mechanisms. The structural regulation of poly-NHC-based architectures with increasing topological complexity is elaborated on by selective combinations of tetraphenylethylene (TPE) units, NHC backbones, and N-wingtip substituents in a controllable manner.Subsequently, we move to elucidating an M-NHC-templated PAM approach that leads to functional organic cages featuring polyimidazolium/triazolium groups of different shapes and sizes that are difficult to access using alternative organic approaches. These organic cages possess well-defined cavities, and their in situ-generated NHC sites are ideal platforms for stabilizing metal nanoparticles (MNPs) within their cavities for improved catalytic performance.Finally, we demonstrate how to design supramolecular M-NHC templates to synthesize cyclobutane derivatives in homogeneous solutions in a catalytic fashion. Selected examples of M-NHC template-dependent structural transformations and photoreactions are discussed. Their applications in molecular recognition, aggregation-induced emission (AIE), cell imaging, anticancer activity, radical chemistry, and stimuli-responsive materials are also described.Taken together, M-NHC-templated approaches have proven to be powerful methods for constructing diverse architectures with functional applications. The development of this methodology is still in its infancy, with tremendous growth potential and a promising future. We believe that this Account will guide researchers to design fascinating and valuable M-carbene species for diverse applications.

3.
Small ; 19(11): e2205770, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36635004

RESUMO

Converting CO2 to clean-burning fuel such as natural gas (CH4 ) with high activity and selectivity remains to be a grand challenge due to slow kinetics of multiple electron transfer processes and competitive hydrogen evolution reaction (HER). Herein, the fabrication of surfactants (C11 H23 COONa, C12 H25 SO4 Na, C16 H33 SO4 Na) intercalated NiAl-layered double hydroxides (NiAl-LDH) is reported, resulting in the formation of LDH-S1 (S1 = C11 H23 COO- ), LDH-S2 (S2 = C12 H25 SO4 - ) and LDH-S3 (S3 = C16 H33 SO4 - ) with curved morphology. Compared with NiAl-LDH with a 1.53% selectivity of CH4 , LDH-S2 shows higher selectivity of CH4 (83.07%) and lower activity of HER (3.84%) in CO2 photoreduction reaction (CO2 PR). Detailed characterizations and DFT calculation indicates that the inherent lattice strain in LDH-S2 leads to the structural distortion with the presence of VNi/Al defects and compressed MOM bonds, and thereby reduces the overall energy barrier of CO2 to CH4 . Moreover, the lower oxidation states of Ni in LDH-S2 enhances the adsorption of intermediates such as OCOH* and *CO, promoting the hydrogenation of CO to CH4 . Therefore, the coupling effect of both lattice strain and electronic structure of the LDH-S2 significantly improves the activity and selectivity for CO2 PR.

4.
Small ; 19(50): e2304604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635099

RESUMO

Selective conversion of ethane (C2 H6 ) to high-value-added chemicals is a very important chemical process, yet it remains challenging owing to the difficulty of ethane activation. Here, a NiTi-layered double hydroxide (NiTi-LDH) photocatalyst is reported for oxidative coupling of ethane to n-butane (n-C4 H10 ) by using CO2 as an oxidant. Remarkably, the as-prepared NiTi-LDH exhibits a high selectivity for n-C4 H10 (92.35%) with a production rate of 62.06 µmol g-1 h-1 when the feed gas (CO2 /C2 H6 ) ratio is 2:8. The X-ray absorption fine structure (XAFS) and photoelectron characterizations demonstrate that NiTi-LDH possesses rich vacancies and high electron-hole separation efficiency, which can promote the coupling of C2 H6 to n-C4 H10 . More importantly, density functional theory (DFT) calculations reveal that ethane is first activated on the oxygen vacancies of the catalyst surface, and the C─C coupling pathway is more favorable than the C─H cleavage to C2 H4 or CH4 , resulting in the high production rate and selectivity for n-C4 H10 .

5.
Small ; 19(21): e2300581, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823447

RESUMO

Electrocatalytic reduction of CO2 to high-value-added chemicals provides a feasible path for global carbon balance. Herein, the fabrication of NiNP x @NiSA y -NG (x,y = 1, 2, 3; NG = nitrogen-doped graphite) is reported, in which Ni single atom sites (NiSA ) and Ni nanoparticles (NiNP ) coexist. These NiNP x @NiSA y -NG presented a volcano-like trend for maximum CO Faradaic efficiency (FECO ) with the highest point at NiNP2 @NiSA2 -NG in CO2 RR. NiNP2 @NiSA2 -NG exhibited ≈98% of maximum FECO and a large current density of -264 mA cm-2 at -0.98 V (vs. RHE) in the flow cell. In situ experiment and density functional theory (DFT) calculations confirmed that the proper content of NiSA and NiNP balanced kinetic between proton-feeding and CO2 hydrogenation. The NiNP in NiNP2 @NiSA2 -NG promoted the formation of H* and reduced the energy barrier of *CO2 hydrogenation to *COOH, and CO desorption can be efficiently facilitated by NiSA sites, thereby resulting in enhanced CO2 RR performance.

6.
Small ; 19(41): e2303420, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37312653

RESUMO

Direct and selective oxidation of benzene to phenol is a long-term goal in industry. Although great efforts have been made in homogenous catalysis, it still remains a huge challenge to drive this reaction via heterogeneous catalysts under mild conditions. Herein, a single-atom Au loaded MgAl-layered double hydroxide (Au1 -MgAl-LDH) with a well-defined structure, in which the Au single atoms are located on the top of Al3+ with Au-O4 coordination as revealed by extended x-ray-absorption fine-structure (EXAFS)and density-functional theory (DFT)calculation is reported. The photocatalytic results prove the Au1 -MgAl-LDH is capable of driving benzene oxidation reaction with O2 in water, and exhibits a high selectivity of 99% for phenol. While contrast experiment shows a ≈99% selectivity for aliphatic acid with Au nanoparticle loaded MgAl-LDH (Au-NP-MgAl-LDH). Detailed characterizations confirm that the origin of the selectivity difference can be attributed to the profound adsorption behavior of substrate benzene with Au single atoms and nanoparticles. For Au1 -MgAl-LDH, single Au-C bond is formed in benzene activation and result in the production of phenol. While for Au-NP-MgAl-LDH, multiple AuC bonds are generated in benzene activation, leading to the crack of CC bond.

7.
Chemistry ; 29(37): e202300050, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37043334

RESUMO

Layered double hydroxides (LDHs) have shown great potential as adsorbents for the removal of heavy metals. Nevertheless, how the host-guest interactions of LDHs affect the removal mechanism remains to be less explored. Herein, CO3 2- /NO3 - /SO4 2- /Cl- intercalated MgAl-LDHs with different host-guest interactions were fabricated and their removal mechanism for Cd2+ was investigated. The removal capacity increased in the order of MgAl-CO3 (127.3 mg/g)

8.
Angew Chem Int Ed Engl ; 62(45): e202311696, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37711060

RESUMO

The key issue in the 5-hydroxymethylfurfural oxidation reaction (HMFOR) is to understand the synergistic mechanism involving the protons deintercalation of catalyst and the adsorption of the substrate. In this study, a Pd/NiCo catalyst was fabricated by modifying Pd clusters onto a Co-doped Ni(OH)2 support, in which the introduction of Co induced lattice distortion and optimized the energy band structure of Ni sites, while the Pd clusters with an average size of 1.96 nm exhibited electronic interactions with NiCo support, resulting in electron transfer from Pd to Ni sites. The resulting Pd/NiCo exhibited low onset potential of 1.32 V and achieved a current density of 50 mA/cm2 at only 1.38 V. Compared to unmodified Ni(OH)2 , the Pd/NiCo achieved an 8.3-fold increase in peak current density. DFT calculations and in situ XAFS revealed that the Co sites affected the conformation and band structure of neighboring Ni sites through CoO6 octahedral distortion, reducing the proton deintercalation potential of Pd/NiCo and promoting the production of Ni3+ -O active species accordingly. The involvement of Pd decreased the electronic transfer impedance, and thereby accelerated Ni3+ -O formation. Moreover, the Pd clusters enhanced the adsorption of HMF through orbital hybridization, kinetically promoting the contact and reaction of HMF with Ni3+ -O.

9.
Angew Chem Int Ed Engl ; 62(22): e202219017, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36988086

RESUMO

Chiral Au nanoclusters have promising application prospects in chiral sensing, asymmetric catalysis, and chiroptics. However, enantiopure superatomic homogold clusters with crystallographic structures emitting bright circularly polarized luminescence (CPL) remain challenging. In this study, we designed chiral N-heterocyclic carbenes (NHCs), and for the first time enantioselectively synthesized a pair of monovalent cationic superatomic Au13 clusters. This new enantiomeric pair of clusters has a quasi-C2 symmetric core and exhibited CPL with an unprecedent solution-state quantum yield (QY) of 61 % among those of the atomically precise Au nanoclusters. DFT calculations provided insights into the circular dichroism behavior, and revealed the origin of CPL from superatomic Au clusters. This work opens a new avenue for developing novel homochiral nanoclusters using chiral NHC ligands and provides fundamental understanding of the origin of the chiroptics of metal clusters.

10.
J Am Chem Soc ; 144(35): 16191-16198, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35972889

RESUMO

The selective separation of structurally similar aliphatic/aromatic hydrocarbons is an essential goal in industrial processes. In this study, we report the synthesis of a water-soluble (Tr2M3)4L4 (Tr = cycloheptatrienyl ring; M = metal; L = organosulfur ligand) molecular cage (1) via self-assembly of the water-soluble acceptor tripalladium sandwich species [(Tr2Pd3)(CH3CN)][NO3]2 and the attachment onto L of solubilizing methoxyethoxy appendants to be utilized in an energy-friendly alternative approach to the separation of structurally similar molecules under ambient conditions. Cage 1, comprising a hydrophobic inner cavity, exhibited good solubility and stability in aqueous media. It also demonstrated excellent performance in the sequential separation of alkanes (C6-C9), xylene, and other disubstituted benzene isomers and cis/trans-decalin.


Assuntos
Alcanos , Água , Alcanos/química , Hidrocarbonetos , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Ligantes , Metais , Água/química
11.
Small ; 18(40): e2203787, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058649

RESUMO

The conversion of CO2 into high-value added chemicals driven by solar energy is an effective way to solve environmental problems, which is, however, largely restricted by the competition reaction of the hydrogen evolution reaction (HER) and easy electron-hole recombination, etc. Herein, VO4 -supported ultrathin NiMgV-layered double hydroxide (V/NiMgV-LDH) nanosheets are successfully fabricated, and the extended X-ray absorption fine structure (EXAFS) and density function theory (DFT) calculations reveal that VO4 species are located on the top of V atoms in the NiMgV-LDH laminate. The V/NiMgV-LDH is proved to be highly efficient for the photocatalytic CO2 reduction reaction (CO2 PR) with high selectivity of 99% for C1 products and nearly no HER (<1%) takes place under visible light. Contrast experiments using NiMgV-LDH as the catalyst for CO2 PR show a CO selectivity of 71.40% and a H2 selectivity of 28.11%. Such excellent performance of V/NiMgV-LDH can be attributed to the following reasons: 1) the V/NiMgV-LDH modulates the band structure and promotes the separation of electrons and holes; 2) strong bonding between V/NiMgV-LDH and CO* and H* facilitates the hydrogenation to form CH4 and inhibits the formation of by-product H2 at the same time.

12.
Small ; 18(35): e2202334, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934816

RESUMO

To realize excellent selectivity of CH4 in CO2 photoreduction (CO2 PR) is highly desirable, yet which is challenging due to the limited active sites for CH4 generation and severe electron-hole recombination on photocatalysts. Herein, based on the theoretically calculated effects of vanadium incorporation into the laminate of layered double hydroxides (LDHs), V into NiAl-LDH to synthesize a series of LDHs with various V contents is introduced. NiV-LDH is revealed to afford a high CH4 selectivity (78.9%), and extremely low H2 selectivity (only 0.4%) under λ > 400 nm irradiation. By further tuning the molar ratio of Ni to V, a CH4 selectivity of as high as 90.1% is achieved on Ni4 V-LDH, and H2 is completely prohibited on Ni2 V-LDH. Fine structural characterizations and comprehensive optical and electrochemical studies uncover V incorporation creates the lower-valence Ni species as active sites for generating CH4 , and enhances the generation, separation, and transfer of photogenerated carriers.

13.
Chem Soc Rev ; 50(24): 13559-13586, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34783804

RESUMO

Though N-heterocyclic carbenes (NHCs) have emerged as diverse and powerful discrete functional molecules in pharmaceutics, nanotechnology, and catalysis over decades, the heterogenization of NHCs and their precursors for broader applications in porous materials, like metal-organic frameworks (MOFs), porous coordination polymers (PCPs), covalent-organic frameworks (COFs), porous organic polymers (POPs), and porous organometallic cages (POMCs) was not extensively studied until the last ten years. By de novo or post-synthetic modification (PSM) methods, myriads of NHCs and their precursors containing building blocks were designed and integrated into MOFs, PCPs, COFs, POPs and POMCs to form various structures and porosities. Functionalisation with NHCs and their precursors significantly expands the scope of the potential applications of porous materials by tuning the pore surface chemical/physical properties, providing active sites for binding guest molecules and substrates and realizing recyclability. In this review, we summarise and discuss the recent progress on the synthetic methods, structural features, and promising applications of NHCs and their precursors in functionalised porous materials. At the end, a brief perspective on the encouraging future prospects and challenges in this contemporary field is presented. This review will serve as a guide for researchers to design and synthesize more novel porous materials functionalised with NHCs and their precursors.

14.
Chemistry ; 27(29): 7853-7861, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33780062

RESUMO

The incorporation of functional groups into the cavity of discrete supramolecular coordination cages (SCCs) will bring unique functions and applications. Here, three dicarboxylate ligands (H2 L1Cl, H2 L2Cl and H2 L3Cl) containing N-heterocyclic carbene (NHC) precursors as linkers were introduced to construct SCCs by combining with two C3 -symmertic (CpZr)3 (µ3 -O)(µ2 -OH)3 clusters as three-connect vertices, resulted in a series of rugby-like V2 E3 (V=vertex, E=edge) type homoleptic cages (SCC-1, SCC-2 and SCC-3). However, V4 E6 -type tetrahedral cages (SCC-4 and SCC-5), incorporating six Au-NHC moieties, were obtained when the corresponding NHC-gold(I) functionalized ligands (H2 L1Au , H2 L2Au ) were applied. For the first time, we present a trackable CpZr-involved cage to cage conversion to generate a heteroleptic V2 E3 cage (SCC-6) from two homoleptic cages (SCC-2 and SCC-5) with different geometries of V2 E3 and V4 E6 . The heteroleptic assembly SCC-6 can also be formed upon a subcomponent displacement strategy. The structural transformation and reassembly processes were detected and monitored by 1 H NMR spectroscopy and electrospray-ionization mass spectrometry. The formation of heteroleptic assembly was further supported by single crystal X-ray diffraction analysis. Moreover, homoleptic cage SCC-2 possesses a trigonal bipyramidal cationic cavity allowing the encapsulation of a series of sulfonate anionic guests.

15.
J Am Chem Soc ; 142(31): 13614-13621, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32645269

RESUMO

Three-dimensional (3D) triply interlocked catenanes are a family of chemical topologies that consist of two identical, mechanically interlocked coordination cage components with intriguingly complex structures. Although only a few successful constructions of 3D interlocked catenanes have been achieved to date via metal-mediated assembly, these complex structures have thus far only been targeted by metal-nitrogen/oxygen coordination techniques. Here, taking advantage of rational ligand design, we report the efficient construction of a series of 3D triply interlocked [2]catenanes of the formula [Ag3L2]2, wherein the metal ions exclusively form bonds to N-heterocyclic carbene (NHC) units, and their subsequent transmetalation to the corresponding [Au3L2]2 gold analogues. The formation and transmetalation reactions proceed under mild conditions and are generally applicable. A series of characterization techniques were applied to confirm the formation and structure of the desired 3D triply interlocked architectures: multinuclear NMR spectroscopy, ESI-MS, and single-crystal X-ray diffraction analysis. The solid-state structure of [Ag3(1a)2]2(PF6)6 unambiguously confirms the existence of a 3D catenane that consists of two identical, mechanically interlocked trinuclear hexacarbene cage components. The interlocking of two 3D cages into a [2]catenane is driven by the efficient π···π stacking of triazine-triazine stacks with cooperative interactions between imidazo[1,5-a]pyridine subunits. Notably, the triply interlocked organometallic cages exhibit good stability toward various organic solvents, concentrations, and temperatures, and no disassembly occurred in the presence of coronene or pyrene. The future construction of mechanically interlocked architectures using metal-carbene bonds rather than metal-nitrogen bonds may provide assemblies with interesting properties for as-yet-unimagined applications in fields such as sensors and molecular electrical conductors.

16.
J Am Chem Soc ; 142(5): 2524-2531, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31940194

RESUMO

The properties of supramolecular structures are highly dependent on their metal-centered building blocks and organic linkers, thus the search for novel systems will lead to new functions and applications for these unique assemblies. Here, two discrete triangular trimetallic sandwich building blocks were developed to construct supramolecular assemblies through coordination-driven self-assembly with organosulfur ligands. A series of tubelike (Tr2Pd3)4L6 assemblies (Tr = cycloheptatrienyl ring) were obtained from a discrete triangular tripalladium sandwich complex with bifunctional organosulfur ligands. By replacing the metal centers of the platinum analogue, the self-assembly process resulted in the clean formation of (Tr2Pt3)2L3 triple helicates instead of tubelike species. The trimetallic sandwich building blocks were also shown to form face-capped (Tr2M3)4L4 (M = Pd or Pt) tetrahedral cages when trifunctional organosulfur ligands were used. The supramolecular assemblies were comprehensively analyzed by X-ray crystallography. A metal-cluster-induced structural transformation between (Tr2Pd3)4L4 tubes and (Tr2Pt3)2L3 triple helicates was observed. Furthermore, the face-capped (Tr2Pd3)4L4 cage possesses a tetrahedral cavity allowing the encapsulation of a series of guests.

17.
Molecules ; 25(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106419

RESUMO

The orexin receptor (OX) is critically involved in motivation and sleep-wake regulation and holds promising therapeutic potential in various mood disorders. To further investigate the role of orexin receptors (OXRs) in the living human brain and to evaluate the treatment potential of orexin-targeting therapeutics, we herein report a novel PET probe ([11C]CW24) for OXRs in the brain. CW24 has moderate binding affinity for OXRs (IC50 = 0.253 µM and 1.406 µM for OX1R and OX2R, respectively) and shows good selectivity to OXRs over 40 other central nervous system (CNS) targets. [11C]CW24 has high brain uptake in rodents and nonhuman primates, suitable metabolic stability, and appropriate distribution and pharmacokinetics for brain positron emission tomography (PET) imaging. [11C]CW24 warrants further evaluation as a PET imaging probe of OXRs in the brain.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem , Receptores de Orexina/isolamento & purificação , Tomografia por Emissão de Pósitrons , Encéfalo/fisiologia , Humanos , Receptores de Orexina/genética , Sono/genética , Sono/fisiologia
18.
Angew Chem Int Ed Engl ; 59(32): 13516-13520, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32329204

RESUMO

The efficient backbone-directed self-assembly of cyclic metalla[3]catenanes by the combination of tetrachloroperylenediimide (TCPDI)-based dinuclear rhodium(III) clips and 4,4'-diazopyridine or 4,4'-dipyridylethylene ligands is realized in a single-step strategy. The topology and coordination geometry of the cyclic metalla[3]catenanes are characterized by NMR spectroscopy, ESI-TOF-MS spectrometry, UV/Vis-NIR spectroscopy, and X-ray diffraction studies. The most remarkable feature of the formed cyclic metalla[3]catenane is that it contains π-aggregates (ca. 2.6 nm) incorporating six TCPDIs. Further studies revealed that cyclic metalla[3]catenanes can be converted reversibly to their corresponding sodium adducts and precursor building blocks, respectively. This strategy opens the possibility of generating unique supramolecular structures from discrete functional π-aggregates with precise arrangements.

19.
Immunopharmacol Immunotoxicol ; 41(1): 172-177, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30896303

RESUMO

Objective: To investigate the cellular mechanism that sinomenine (SIN) inhibits inflammation in macrophages induced by LPS through α7 nicotinic acetylcholine receptor (α7nAChR). Materials and methods: RAW264.7 cells were stimulated with LPS and treated by SIN or nicotine (Nic). A selective antagonist of α7nAChR, α-bungarotoxin (BTX) was used to block α7nAChR. AG490 was used to inhibit JAK2 activation. ELISA was performed to detect the levels of TNF-α and MCP-1. Western blotting was used to analyze the expression of MIF, MMP-9, CD14, TLR4, STAT3 and p-STAT3. Intracellular-free calcium level was measured by Fluorescent probe fluo-3/AM Results: SIN inhibited the production of TNF-α, MCP-1, MIF, and MMP-9, decreased the expression of CD14 and TLR4, and inhibited the release of intracellular-free calcium from intracellular stores in RAW 264.7 cells stimulated by LPS. JAK-specific inhibitor AG490 attenuated the inhibitory effect of SIN on TNF-α. SIN increased the phosphorylation of STAT3. And the above effects of SIN were attenuated by antagonist of α7nAChR. Conclusions: SIN can decrease the expression of CD14/TLR4 and intracellular free calcium level, activate JAK2/STAT3 pathway to inhibit inflammatory response through α7nAChR in macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Janus Quinase 2/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Morfinanos/farmacologia , Fator de Transcrição STAT3/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Transdução de Sinais
20.
Angew Chem Int Ed Engl ; 58(34): 11860-11867, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31183943

RESUMO

Although progress has been made to improve photocatalytic CO2 reduction under visible light (λ>400 nm), the development of photocatalysts that can work under a longer wavelength (λ>600 nm) remains a challenge. Now, a heterogeneous photocatalyst system consisting of a ruthenium complex and a monolayer nickel-alumina layered double hydroxide (NiAl-LDH), which act as light-harvesting and catalytic units for selective photoreduction of CO2 and H2 O into CH4 and CO under irradiation with λ>400 nm. By precisely tuning the irradiation wavelength, the selectivity of CH4 can be improved to 70.3 %, and the H2 evolution reaction can be completely suppressed under irradiation with λ>600 nm. The photogenerated electrons matching the energy levels of photosensitizer and m-NiAl-LDH only localized at the defect state, providing a driving force of 0.313 eV to overcome the Gibbs free energy barrier of CO2 reduction to CH4 (0.127 eV), rather than that for H2 evolution (0.425 eV).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA