Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
FASEB J ; 36(1): e22070, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859931

RESUMO

The important role of hydrogen sulfide (H2 S) as a novel gasotransmitter in inhibiting proliferation and promoting apoptosis of vascular smooth muscle cells (VSMCs) has been widely recognized. The dopamine D1 receptor (DR1), a G protein coupled receptor, inhibits atherosclerosis by suppressing VSMC proliferation. However, whether DR1 contributes to VSMC apoptosis via the induction of endogenous H2 S in diabetic mice is unclear. Here, we found that hyperglycemia decreased the expressions of DR1 and cystathionine-γ-lyase (CSE, a key enzyme for endogenous H2 S production) and reduced endogenous H2 S generation in mouse arteries and cultured VSMCs. DR1 agonist SKF38393 increased DR1 and CSE expressions and stimulated endogenous H2 S generation. Sodium hydrosulfide (NaHS, a H2 S donor) increased CSE expressions and H2 S generation but had no effect on DR1 expression. In addition, high glucose (HG) increased VSMC apoptosis, up-regulated IGF-1-IGF-1R and HB-EGF-EGFR, and stimulated ERK1/2 and PI3K-Akt pathways. Overexpression of DR1, the addition of SKF38393 or supply of NaHS further promoted VSMC apoptosis and down-regulated the above pathways. Knock out of CSE or the addition of the CSE inhibitor poly propylene glycol diminished the effect of SKF38393. Moreover, calmodulin (CaM) interacted with CSE in VSMCs; HG increased intracellular Ca2+ concentration and induced CaM expression, further strengthened the interaction of CaM with CSE in VSMCs, which were further enhanced by SKF38393. CaM inhibitor W-7, inositol 1,4,5-trisphosphate (IP3 ) inhibitor 2-APB, or ryanodine receptor inhibitor tetracaine abolished the stimulatory effect of SKF38393 on CaM expression and intracellular Ca2+ concentration. Taken together, these results suggest that DR1 up-regulates CSE/H2 S signaling by inducing the Ca2+ -CaM pathway followed by down-regulations of IGF-1-IGF-1R and HB-EGF-EGFR and their downstream ERK1/2 and PI3K-Akt, finally promoting the apoptosis of VSMCs in diabetic mice.


Assuntos
Apoptose , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais , Regulação para Cima , Animais , Cistationina gama-Liase/genética , Feminino , Masculino , Camundongos , Receptores de Dopamina D1/genética
2.
Mol Cell Biochem ; 431(1-2): 151-160, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28281186

RESUMO

Several studies have identified the critical role of calcium-sensing receptors (CaSRs) in cardiac ischaemia/reperfusion injury and cardiac hypertrophy and have demonstrated that CaSRs induce myocardial apoptosis by activating MAPKs. Using acute myocardial infarction rat models, we found that a combination therapy of CaSR inhibition and embryonic stem cell (ESC) transplantation after acute myocardial infarction (AMI) leads to a dramatic reduction in the infarct size; a significant increase in the maximum rising and falling rate (+dp/dtmax and -dp/dtmax, respectively) of left ventricular pressure; a significant decrease in left ventricular end-diastolic pressure; a significant decrease in the mRNA expression level of CaSR, Bax, Bcl-2, cleaved caspase-3, cleaved caspase-9, p-ERK, p-JNK and p-P38 protein together with apoptosis indexes in the C and E groups; and a significant decrease in cTnT levels as well as LDH and CK activity. These findings indicate that cardiac function could be enhanced significantly by combination therapy with CaSR inhibition and ESC transplantation; the effect was better than ESC transplantation alone, and the mechanism might be associated with a reduction in cell apoptosis via the inhibition of the MAPK pathway. Apoptosis could be reduced through CaSR, which regulates the MAPK pathway and apoptosis-related protein. Our study indicated that CaSR inhibitors have a pivotal role in the treatment of AMI.


Assuntos
Sistema de Sinalização das MAP Quinases , Células-Tronco Embrionárias Murinas/metabolismo , Infarto do Miocárdio , Receptores de Detecção de Cálcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transplante de Células-Tronco , Animais , Apoptose , Proteínas Reguladoras de Apoptose/biossíntese , Linhagem Celular , Regulação da Expressão Gênica , Xenoenxertos , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Ratos , Ratos Wistar , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores
3.
Exp Cell Res ; 323(1): 118-130, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24412422

RESUMO

The physiological and pathological roles of dopamine D2 receptors (DR2) in the regulation of cardiovacular functions have been recognized. DR2 activation protects hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and apoptosis, and ischemic post-conditioning (PC) plays a critical role in cardioprotection as well; however the involvement of the DR2 activation in the PC-induced cardioprotection is unknown. In the present study, we found that the H/R increased the expressions of DR2 mRNA and protein in cardiomyocytes, which were significantly enhanced by PC. Bromocriptine (Bro, a DR2 agonist) further increased DR2 expression, but Haloperidol (Hal, a DR2 antagonist) reversed the Bro-induced DR2 expressions. PC protected against H/R-induced apoptosis, the rise of [Ca(2+)]i, the expressions of cleaved caspase-3 and -9, release of cytochrome c, and mPTP opening. In addition, PC counteracted the reduction of cell viability caused by H/R, increased the phosphorylation of ERK1/2, PI3K, Akt, GSK-3ß and mitochondrial membrane potential. PC further increased Bcl-2 expression, promoted PKC-ε translocation to cell membrane, and activated the mitochondrial ATP-sensitive K channels (mKATP). Bro further enhanced the cardioprotective roles of PC, but Hal reversed these effects of Bro. Meanwhile, we found that DR2 was expressed in cell membrane and interacted with PKC-ε in PC. In conclusion, these results suggest that PC attenuates cardiomyocyte apoptosis via inhibition of mPTP opening by DR2-mediated activation of ERK1/2, PI3K-Akt-GSK-3ß and PKC-ε-mKATP. These findings provide a novel target for the treatment of ischemic cardiomyopathy.


Assuntos
Pós-Condicionamento Isquêmico , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Bromocriptina/farmacologia , Cálcio/metabolismo , Cardiotônicos , Caspase 3/metabolismo , Caspase 9/metabolismo , Hipóxia Celular , Sobrevivência Celular , Citocromos c/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Haloperidol/farmacologia , Canais KATP/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Isquemia Miocárdica/tratamento farmacológico , Miócitos Cardíacos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C-épsilon/metabolismo , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Receptores de Dopamina D2/biossíntese , Receptores de Dopamina D2/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
4.
Mol Cell Biochem ; 390(1-2): 133-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464033

RESUMO

Ornithine decarboxylase (ODC) is the first rate-limiting enzyme in polyamine biosynthesis, which is essential for cell survival. We hypothesized that the ODC/polyamine system is involved in ischemic preconditioning (IPC)-mediated cardioprotection through the activation of Erk1/2 and Akt and through the inhibition of the mitochondrial permeability transition (mPT). Isolated rat hearts were subjected to 40 min of ischemia either with or without IPC (3 cycles of 5-min global ischemia), and ODC protein expression, polyamine content, and Akt and Erk1/2 phosphorylation were evaluated after 30 min of reperfusion. IPC significantly upregulated the ODC/polyamine pathway, promoted Erk1/2 and Akt phosphorylation, and reduced the infarct size and heart dysfunction after reperfusion. An inhibitor of ODC, α-difluoromethylornithine (DFMO), abolished the IPC-induced cardioprotection. Moreover, the inhibition of the IPC-induced activation of Erk1/2 and Akt using PD98059 or wortmannin downregulated the ODC/polyamine system. In separate studies, the Ca(2+) load required to open the mPT pore was significantly lower in DFMO-treated cardiac mitochondria than in mitochondria from IPC hearts. Furthermore, spermine or spermidine significantly inhibited the mPT induced by CaCl2. These results suggest that IPC upregulates the ODC/polyamine system and mediates preconditioning cardioprotection, which may depend on the phosphorylation/activation of Erk1/2 and Akt and on the inhibition of the mPT during reperfusion.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ornitina Descarboxilase/biossíntese , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Precondicionamento Isquêmico Miocárdico , Masculino , Proteínas de Transporte da Membrana Mitocondrial/genética , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Ornitina Descarboxilase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ratos
5.
Mol Cell Biochem ; 396(1-2): 87-98, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25063217

RESUMO

Phenotype modulation of pulmonary artery smooth muscle cells (PASMCs) plays an important role during hypoxia-induced vascular remodeling and pulmonary hypertension (PAH). We had previously shown that calcium-sensing receptor (CaSR) is expressed in rat PASMCs. However, little is known about the role of CaSR in phenotypic modulation of PASMCs in hypoxia-induced PAH as well as the underlying mechanisms. In this study, we investigated whether CaSR induces the proliferation of PASMCs in small pulmonary arteries from both rats and human with PAH. PAH was induced by exposing rats to hypoxia for 7-21 days. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVI), the percentage of medial wall thickness to the external diameter (WT %), and cross-sectional total vessel wall area to the total area (WA %) of small pulmonary arteries were determined by hematoxylin and eosin (HE), masson trichrome and Weigert's staining. The protein expressions of matrix metalloproteinase (MMP)-2 and MMP-9, the tissue inhibitors of metalloproteinase (TIMP)-3, CaSR, proliferating cell nuclear antigen (PCNA), phosphorylated extracellular signal-regulated kinase (p-ERK), and smooth muscle cell (SMC) phenotype marker proteins in rat small pulmonary arteries, including calponin, SMα-actin (SMAα), and osteopontin (OPN), were analyzed by immunohistochemistry and Western blotting, respectively. In addition, immunohistochemistry was applied to paraffin-embedded human tissues from lungs of normal human and PAH patients with chronic heart failure (PAH/CHF). Compared with the control group, mPAP, RVI, WT % and WA % in PAH rats were gradually increased with the prolonged hypoxia. At the same time, the expressions of CaSR, MMP-2, MMP-9, TIMP-3, PCNA, OPN, and p-ERK were markedly increased, while the expressions of SMAα and calponin were significantly reduced in lung tissues or small pulmonary arteries of PAH rats. Neomycin (an agonist of CaSR) enhanced but NPS2390 (an antagonist of CaSR) weakened these hypoxic effects. We further found that the expression change of CaSR, PCNA, and SMC phenotypic marker proteins in PAH/CHF lungs was similar to those in PAH rats. Our data suggest that CaSR is involved in the pulmonary vascular remodeling and PAH by promoting phenotypic modulation of small pulmonary arteries.


Assuntos
Hipertensão Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Remodelação Vascular/fisiologia , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/complicações , Hipóxia/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Artéria Pulmonar/patologia , Ratos Wistar , Valores de Referência , Inibidor Tecidual de Metaloproteinase-3/metabolismo
6.
Differentiation ; 85(1-2): 32-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23314289

RESUMO

The calcium-sensing receptor (CaSR), a G protein coupled receptor, is involved in a number of physiological and pathological processes. Embryonic stem cells (ESCs) have a potential role to differentiate into all types of cells. Whether CaSR is functionally expressed in ESCs is unclear. In this study, the expression and distribution of CaSR in 129 mouse ES-D3 cell lines were detected by Western blotting and immunofluorescence; and the intracellular calcium concentration ([Ca(2+)]i) was measured using Laser Confocal Scanning Microscopy. Mouse embryonic stem cells (mESCs) were cultured to embryoid bodies (EBs) and the differentiation of EBs into cardiomyocytes was induced by icariin (ICA). The cardiac specific proteins, a-Actinin and cardiac troponin-I (cTnI), were analyzed by immunofluorescence, and the differentiation rate was analyzed by flow cytometry. The expression of cardiac-specific transcription factors, Nkx2.5 and GATA-4, was detected by Western blotting. We found that the CaSR protein exists in both mESCs and mESC-derived cardiomyocytes (mESC-CMs). Increasing extracellular calcium or neomycin (an agonist of CaSR) increased [Ca(2+)]i and the differentiation rate. These effects were abolished by inhibition of CaSR, phospholipase C, IP3 receptor and Ca(2+) ATPase, or by depletion of the sarcoplasmic reticulum Ca(2+) store, respectively. Activation of CaSR up-regulated protein expression of Nkx2.5 and GATA4 in EBs at an early stage of ICA-induced differentiation. In conclusion, CaSR is functionally expressed in mESCs, and activation of CaSR is involved in the differentiation of mESCs into cardiomyocytes by facilitating the expression of NKx2.5 and GATA-4.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Actinina/genética , Actinina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/citologia , Flavonoides/farmacologia , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Neomicina/farmacologia , Receptores de Detecção de Cálcio/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Troponina I/genética , Troponina I/metabolismo , Regulação para Cima
7.
Mol Cell Biochem ; 379(1-2): 267-76, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23636617

RESUMO

Dopamine D2 receptors (DR2) are important regulators in many organs, including cardiac system. Protein kinase C (PKC) activation and translocation is associated with cardioprotection against ischemic post-conditioning (PC); however, the regulatory role of DR2 during this process has been unknown. This study hypothesized that the prevention of cardiomyocyte damage by DR2 activation is associated with PKC translocation to the cell membrane. In the present study, we found that the ischemia/reperfusion (I/R) increased the expressions of DR2 mRNA and protein, which were further enhanced by PC. Bromocriptine (DR2 agonist) up-regulated the PC-induced DR2 expressions, and Haloperidol (DR2 antagonist) reversed the increase of DR2 expressions by Bromocriptine. PC reduced I/R-induced cardiomyocytes damage, apoptosis and myocardial infarct size, and improved cardiac function. Compared with PC, Bromocriptine further enhanced the cardioprotective roles of PC, but Haloperidol canceled the protection effect of Bromocriptine. PC up-regulated PKC-ε translocation in the particulate fraction, which was further strengthened by Bromocriptine but canceled by Haloperidol. In the cytosolic fraction, the changes of the PKC-ε translocation were opposite to the particulate fraction. These findings suggest that DR2 activation provides cardioprotection via promoting PC-induced translocation of PKC-ε.


Assuntos
Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Proteína Quinase C-épsilon/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Apoptose , Catalase/metabolismo , Vasos Coronários/fisiopatologia , Creatina Quinase/metabolismo , Expressão Gênica , Técnicas In Vitro , Pós-Condicionamento Isquêmico , Masculino , Malondialdeído/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/terapia , Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/fisiologia , Transporte Proteico , Ratos , Ratos Wistar , Receptores de Dopamina D2/genética , Superóxido Dismutase/metabolismo , Função Ventricular Esquerda , Pressão Ventricular
8.
Mol Cell Biochem ; 362(1-2): 115-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22083546

RESUMO

Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs) and up-regulated in atherosclerotic lesion by various stimuli, such as oxidized low-density lipoprotein (oxLDL). Calcium-sensing receptor (CaSR) is also expressed in VSMCs, but it remains unclear whether CaSR is associated with overproduction of MMP-2 in VSMCs. In this study, the expression of MMP-2 was detected by real-time PCR and Western blot analysis, and the gelatinolytic activity of MMP-2 was measured using gelatin zymography. Our results showed that oxLDL enhanced MMP-2 expression and activity in rat aortic VSMCs in a time- and dose-dependent manner. In addition, CaSR expression was up-regulated by oxLDL. Manipulating CaSR function in these cells by NPS2390 (an antagonist of CaSR) or GdCl(3) (an agonist of CaSR) affected the oxLDL-induced MMP-2 production. In VSMCs, oxLDL stimulated the rapid activation of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, as determined by Western blot analysis. Phosphorylation of Akt and MMP-2 production stimulated by oxLDL were attenuated by LY294002 (a specific inhibitor of PI3K). Activation of Akt was suppressed by NPS2390 but enhanced by GdCl(3). In contrast, oxLDL had no stimulatory effect on the phosphorylation of JNK, and pretreatment with SP600125 (an inhibitor of JNK) produced no significant effect on oxLDL-induced MMP-2 production. These results suggest that CaSR mediates oxLDL-induced MMP-2 production in VSMCs via PI3K/Akt signal pathway.


Assuntos
Lipoproteínas LDL/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Antracenos/farmacologia , Aorta/metabolismo , Aterosclerose/metabolismo , Células Cultivadas , Cromonas/farmacologia , Gadolínio/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Morfolinas/farmacologia , Músculo Liso Vascular/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/biossíntese
9.
Int J Mol Med ; 49(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779492

RESUMO

Glomerular mesangial cell (MC) proliferation and extracellular matrix deposition are the main pathological changes in diabetic nephropathy. Hydrogen sulfide (H2S) inhibits the proliferation of MCs. Dopamine 1 receptors (DR1) are expressed in MCs and serve important physiological roles. However, it is unclear whether DR1 activation inhibits MC proliferation by increasing endogenous H2S. The present study found that the production of H2S and the expression of DR1 and cystathionine­Î³­lyase (CSE) were decreased in the renal tissues of diabetic mice and high glucose (HG)­induced MCs. SKF38393 (a DR1 agonist) increased the production of H2S and the expression of DR1 and CSE and NaHS (an exogenous H2S donor) only increased H2S production and CSE expression but not DR1 expression. HG increased the thickness of the glomerular basement membrane, cell viability and proliferation, the expression of cyclin D1, PCNA, collagen 1 and α­smooth muscle actin and the activity of phosphorylated ERK1/2 and decreased the expression of P21 and MMP9. SKF38393 and NaHS reversed the effects of HG. PPG (a CSE inhibitor) abolished the beneficial effects of SKF38393. The beneficial effects of SKF38393 were similar to those of PD98059 (an ERK1/2 inhibitor). Taken together, the findings suggested that the DR1­CSE/H2S pathway activation attenuated diabetic MC proliferation and extracellular matrix deposition by downregulating the ERK1/2 signaling pathway.


Assuntos
Cistationina gama-Liase/metabolismo , Diabetes Mellitus Experimental/patologia , Sulfeto de Hidrogênio/metabolismo , Rim/patologia , Receptores de Dopamina D1/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Linhagem Celular , Proliferação de Células , Colágeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Feminino , Fibrose , Glucose/farmacologia , Rim/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/patologia , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/agonistas
10.
Aging Dis ; 13(3): 910-926, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35656112

RESUMO

Tissue ischemia and hypoxia caused by the abnormal proliferation of smooth muscle cells (SMCs) in the diabetic state is an important pathological basis for diabetic microangiopathy. Studies in recent years have shown that the chronic complications of diabetes are related to the decrease of endogenous hydrogen sulfide (H2S) in diabetic patients, and it has been proven that H2S can inhibit the proliferation of vascular SMCs (VSMCs). Our study showed that the endogenous H2S content and the expression of cystathionine gamma-lyase (CSE), which is the key enzyme of H2S production, were decreased in arterial SMCs of diabetic mice. The expression of PCNA and Cyclin D1 was increased, and the expression of p21 was decreased in the diabetic state. After administration of dopamine 1-like receptors (DR1) agonist SKF38393 and exogenous H2S donor NaHS, the expression of CSE was increased and the change in proliferation-related proteins caused by diabetes was reversed. It was further verified by cell experiments that SKF38393 activated calmodulin (CaM) by increasing the intracellular calcium ([Ca2+]i) concentration, which activated the CSE/H2S pathway, enhancing the H2S content in vivo. We also found that SKF38393 and NaHS inhibited insulin-like growth factor-1 (IGF-1)/IGF-1R and heparin-binding EGF-like growth factor (HB-EGF)/EGFR, as well as their downstream PI3K/Akt, JAK2/STAT3 and ERK1/2 pathways. Taken together, our results suggest that DR1 activation up-regulates the CSE/H2S system by increasing Ca2+-CaM binding, which inhibits the IGF-1/IGF-1R and HB-EGF/EGFR pathways, thereby decreasing their downstream PI3K/Akt, JAK2/STAT3 and ERK1/2 pathways to achieve the effect of inhibiting HG-induced VSMCs proliferation.

11.
Front Biosci (Landmark Ed) ; 27(2): 49, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35226992

RESUMO

BACKGROUND: Endothelial dysfunction plays a crucial role in diabetic vascular complications. A decrease in hydrogen sulfide (H2S) levels is increasingly becoming a vital factor contributing to high glucose (HG)-induced endothelial dysfunction. Dopamine D1-like receptors (DR1) activation has important physiological functions in the cardiovascular system. H2S decreases the dysfunction of vascular endothelial cells. However, no studies have reported whether DR1 protects the function of vascular endothelial cells by regulating H2S levels. AIM: The present study aimed to determine whether DR1 regulates the levels of endogenous H2S, which exerts protective effects against HG-induced injury of human umbilical vein endothelial cells (HUVECs) via Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil containing kinase 1 (ROCK1) signalling. METHODS: HUVECs were exposed to HG (30 mM) or normal glucose (5.5 mM) after different treatments. Cell viability, proliferation and migration were measured by Cell Counting Kit-8, EdU cell proliferation assay, transwell assay and wound healing assay, respectively. H2S probe (7-Azido-4-Methylcoumarin) was used to detect levels of H2S. The intracellular calcium concentration ([Ca2+]i) were measured using Fluo-4 AM. The protein expressions were quantified by Western blot. RESULTS: We found that HG decreased the expression of DR1 and cystathionine γ-lyase (CSE) and H2S production. The DR1 agonist SKF38393 significantly increased DR1 and CSE expression and H2S production, whereas NaHS (a H2S donor) only increased CSE expression and H2S production but had no effect on DR1 expression. Meanwhile, SKF38393 further increased the [Ca2+]i induced by HG. In addition, HG reduced cell viability and the expression of Cyclin D1 and proliferating cell nuclear antigen and increased the expression of p21C⁢i⁢p/W⁢A⁢F-1, collagen I, collagen III, matrix metalloproteinase 9, osteopontin and α-smooth muscle actin and the activity of phosphorylated RhoA and ROCK1. SKF38393 and NaHS reversed these effects of HG. PPG (a CSE inhibitor) abolished the beneficial effect of SKF38393. These effects of SKF38393 were similar to those of Y-27632 (a ROCK inhibitor). CONCLUSION: Taken together, our results suggest that DR1 activation upregulates the CSE/H2S pathway by increasing the [Ca2+]i, which protects endothelial cells from HG-induced injury by inhibiting the RhoA/ROCK1 pathway.


Assuntos
Sulfeto de Hidrogênio , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/farmacologia , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/farmacologia
12.
J Biomed Sci ; 18: 16, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21314926

RESUMO

BACKGROUND: The extracellular calcium-sensing receptor (CaSR) belongs to family C of the G protein coupled receptors. Whether the CaSR is expressed in the pulmonary artery (PA) is unknown. METHODS: The expression and distribution of CaSR were detected by RT-PCR, Western blotting and immunofluorescence. PA tension was detected by the pulmonary arterial ring technique, and the intracellular calcium concentration ([Ca2+]i) was detected by a laser-scanning confocal microscope. RESULTS: The expressions of CaSR mRNA and protein were found in both rat pulmonary artery smooth muscle cells (PASMCs) and PAs. Increased levels of [Ca2+]o (extracellular calcium concentration) or Gd3+ (an agonist of CaSR) induced an increase of [Ca2+]i and PAs constriction in a concentration-dependent manner. In addition, the above-mentioned effects of Ca2+ and Gd3+ were inhibited by U73122 (specific inhibitor of PLC), 2-APB (specific antagonist of IP3 receptor), and thapsigargin (blocker of sarcoplasmic reticulum calcium ATPase). CONCLUSIONS: CaSR is expressed in rat PASMCs, and is involved in regulation of PA tension by increasing [Ca2+]i through G-PLC-IP3 pathway.


Assuntos
Artéria Pulmonar/metabolismo , Receptores de Detecção de Cálcio/genética , Animais , Sequência de Bases , Western Blotting , Compostos de Boro/farmacologia , Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Imunofluorescência , Técnicas In Vitro , Masculino , Dados de Sequência Molecular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Pirrolidinonas/farmacologia , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptores de Detecção de Cálcio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tapsigargina/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores
13.
J Biomed Sci ; 18: 18, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21324201

RESUMO

BACKGROUND: Myocardial ischemia/reperfusion injury is the major cause of morbidity and mortality for cardiovascular diseases. Dopamine D2 receptors are expressed in cardiac tissues. However, the roles of dopamine D2 receptors in myocardial ischemia/reperfusion injury and cardiomyocyte apoptosis are unclear. Here we investigated the effects of both dopamine D2 receptors agonist (bromocriptine) and antagonist (haloperidol) on apoptosis of cultured neonatal rat ventricular myocytes induced by ischemia/reperfusion injury. METHODS: Myocardial ischemia/reperfusion injury was simulated by incubating primarily cultured neonatal rat cardiomyocytes in ischemic (hypoxic) buffer solution for 2 h. Thereafter, these cells were incubated for 24 h in normal culture medium. RESULTS: Treatment of the cardiomyocytes with 10 µM bromocriptine significantly decreased lactate dehydrogenase activity, increased superoxide dismutase activity, and decreased malondialdehyde content in the culture medium. Bromocriptine significantly inhibited the release of cytochrome c, accumulation of [Ca2+]i, and apoptosis induced by ischemia/reperfusion injury. Bromocriptine also down-regulated the expression of caspase-3 and -9, Fas and Fas ligand, and up-regulated Bcl-2 expression. In contrast, haloperidol (10 µM) had no significant effects on the apoptosis of cultured cardiomyocytes under the aforementioned conditions. CONCLUSIONS: These data suggest that activation of dopamine D2 receptors can inhibit apoptosis of cardiomyocytes encountered during ischemia/reperfusion damage through various pathways.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Bromocriptina/farmacologia , Cálcio/metabolismo , Células Cultivadas , Antagonistas dos Receptores de Dopamina D2 , Haloperidol/farmacologia , Masculino , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar , Receptores de Dopamina D2/agonistas
14.
Clin Exp Pharmacol Physiol ; 38(9): 605-12, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21692826

RESUMO

1. Calcium-sensing receptors (CaSR) exist in a variety of tissues. In 2010, we first identified its functional expression in Buffalo rat liver (BRL) cells and demonstrated that the activation of CaSR was involved in an increased intracellular calcium through the Gq subunit-phospholipase C-inositol triphosphate pathway. However, its role and related mechanism in hepatic ischaemia/reperfusion (I/R) injury is still unclear. 2. Therefore, in the present study, BRL cells were incubated in ischaemia-mimetic solution for 4 h, then reincubated in the normal culture medium for 10 h to establish a simulated I/R model. We assayed the apoptotic ratio of BRL cells by flow cytometry and Hoechst 33342 staining; analyzed the expression of CaSR, cytochrome c (Cyt-c), caspase-3, Bcl-2, Bax, extracellular signal-regulated protein kinase (ERK), and p38 by Western blotting; and measured the concentration of intracellular calcium by laser-scanning confocal microscopy. 3. The results showed that simulated I/R increased the expression of CaSR and induced apoptosis in BRL cells. GdCl(3), a specific activator of CaSR, further increased CaSR expression, intracellular calcium, and apoptosis in BRL cells during I/R. The activation of CaSR downregulated Bcl-2 expression, upregulated Cyt-c, caspase-3, and Bax expressions, and promoted p38 and ERK-1/2 phosphorylation. 4. In conclusion, increased CaSR expression plays a vital role in apoptosis induced by I/R injury, in which its mechanism is related with calcium overload and the activation of the mitochondrial and mitogen-activated protein kinase apoptotic pathways. The regulation of CaSR activity might serve as a novel pharmacological target to prevent and treat liver disease.


Assuntos
Apoptose/fisiologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Apoptose/genética , Cálcio/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Células Cultivadas , Citocromos c/genética , Citocromos c/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Inositol Polifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/metabolismo , Ratos , Ratos Endogâmicos BUF , Receptores de Detecção de Cálcio/genética , Traumatismo por Reperfusão/genética , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Mol Cell Biochem ; 342(1-2): 233-40, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20473557

RESUMO

The expression and function of calcium-sensing receptor (CaSR) in differentiated THP-1 (human acute monocytic leukemia cell line) cells are unknown currently. This study investigated above-mentioned issues using TRAP staining, immunofluorescence staining, Western blotting, ELISA, and Laser Confocal Scanning Microscopy techniques. We found that CaSR protein was expressed, and mainly located in the membrane and cytoplasm in differentiated THP-1 cells. Elevated extracellular calcium or GdCl(3) (an agonist of CaSR) raised intracellular calcium concentration. And this increase was inhibited or abolished by NPS2390 (an inhibitor of CaSR), U73122 (a specific inhibitor of phospholipase C, PLC) or thapsigargin (a Ca(2+)-ATPase inhibitor). The extracellular GdCl(3) elevation stimulated both of IL-1beta and TNFalpha release, and this effect of GdCl(3) was inhibited by NPS2390. In conclusion, CaSR is functionally expressed in differentiated THP-1 cells, and the activated CaSR contributes to intracellular calcium increment through Gq-PLC- inositol triphosphate (IP3) pathway and commits to cytokine secretion. These results suggest that CaSR might be involved in a variety of pathological processes mediated by activated monocyte-macrophages.


Assuntos
Cálcio/metabolismo , Diferenciação Celular , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , Receptores de Detecção de Cálcio/metabolismo , Anti-Inflamatórios/farmacologia , Western Blotting , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Gadolínio/farmacologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Transdução de Sinais , Células Tumorais Cultivadas , Fosfolipases Tipo C/metabolismo
16.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 35(5): 390-392, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31894668

RESUMO

OBJECTIVE: To investigate the role of calcium-sensing receptor (CaSR) in the decrease of cardiac function in type 2 diabetic rats. METHODS: Wistar rats were randomly divided into 3 groups including control, diabetic-4 week and diabetic-8 week groups. Rats in the diabetes group were fed with high-glucose and high-fat diet, and intraperitoneal injection of streptozocin (STZ,30 mg/kg) was conducted 4 weeks later to establish a type 2 diabetes model. Cardiac morphological changes were observed by HE staining, cardiac function was detected by echocardiography, and CaSR and PKC-αprotein expressions in cardiac tissue were detected by Western blot. RESULTS: Compared with the control group, the myocardium of diabetic rats showed irregular contraction zone, decreased expression of CaSR protein, increased expression of PKC-α protein, decreased systolic and diastolic functions, and gradually worsened with the prolongation of the course of the disease. CONCLUSION: Hyperglycemia inhibits the expression of CaSR protein in myocardium of diabetic rats by activating PKC-α, which can cause intracellular calcium disorder and lead to decreased cardiac function.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Miocárdio , Animais , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Regulação da Expressão Gênica , Miocárdio/patologia , Distribuição Aleatória , Ratos , Ratos Wistar
17.
J Transl Int Med ; 7(2): 59-68, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31380238

RESUMO

BACKGROUND AND OBJECTIVES: Calcium-sensing receptor (CaSR) is known to regulate hypoxia-induced pulmonary hypertension (HPH) and vascular remodeling via the phenotypic modulation of pulmonary arterial smooth muscle cells (PASMCs) in small pulmonary arteries. Moreover, autophagy is an essential modulator of VSMC phenotype. But it is not clear whether CaSR can regulate autophagy involving the phenotypic modulation under hypoxia. METHODS: The viability of human PASMCs was detected by cell cycle and BrdU. The expressions of proliferation protein, phenotypic marker protein, and autophagy protein in human PASMCs were determined by western blot. RESULTS: Our results showed that hypoxia-induced autophagy was considerable at 24 h. The addition of NPS2390 decreased the expression of autophagy protein and synthetic phenotype marker protein osteopontin and increased the expression of contractile phenotype marker protein SMA-ɑ and calponin via suppressing downstream PI3K/Akt/mTOR signal pathways. CONCLUSIONS: Our study demonstrates that treatment of NPS2390 was conducive to inhibit the proliferation and reverse phenotypic modulation of PASMCs by regulating autophagy levels.

18.
Exp Biol Med (Maywood) ; 241(14): 1505-15, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27190250

RESUMO

Myocardial infarction (MI) is associated with a high mortality rate, which is attributed to the effects of myocyte loss that occurs as a result of ischemia-induced cell death. Very few therapies can effectively prevent or delay the effects of ischemia. Polyamines (PAs) are polycations required for cell growth and division, and their use may prevent cell loss. The aim of this study was to investigate the relationship between hypoxia/ischemia (H/I)-induced cell apoptosis and PA metabolism and to investigate the ability of spermine to limit H/I injury in cardiomyocytes by blocking the mitochondrial apoptotic pathway. Neonatal rat cardiomyocytes were placed under hypoxic conditions for 24 h after being subjected to 5 µM of spermine as a pretreatment therapy. H/I induced PA catabolism, which was indicated by a 1.3-fold up-regulation of spermidine/spermine N(1)-acetyltransferase expression. Exogenous spermine significantly reduced H/I-induced cell death rate (60 ± 2 to 36 ± 2%) and apoptosis rate (42 ± 2 to 21 ± 2%); it also attenuated lactate dehyodrogenase and creatine kinase leakage (440 ± 13 and 336 ± 16 U/L to 275 ± 15 and 235 ± 13 U/L). Furthermore, it decreases calcium overload (3.8 ± 0.2 to 2.2 ± 0.1 a.u.). Moreover, spermine pretreatment remarkably decreased cytochrome c release from the mitochondria to the cytosol, lowering the expression of cleaved caspase-3 and -9. With spermine pretreatment, there was an increase in Bcl-2 levels and phosphorylation of ERK1/2, phosphoinositide 3-kinase, Akt, and GSK-3ß, preserving mitochondrial membrane potential and inducing an mitochondrial permeability transition pore opening. In conclusion, H/I decreased endogenous spermine concentrations in cardiomyocytes, which ultimately induced apoptosis. The addition of exogenous spermine effectively prevented myocyte cell death.


Assuntos
Apoptose/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Espermina/farmacologia , Animais , Hipóxia Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Potencial da Membrana Mitocondrial , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/fisiologia , Permeabilidade/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos
19.
Cell Biosci ; 6: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27096074

RESUMO

BACKGROUND: Hydrogen sulfide (H2S), a third member of gasotransmitter family along with nitric oxide and carbon monoxide, generated from mainly catalyzed by cystathionine-lyase, possesses important functions in the cardiovascular system. Ischemic post-conditioning (PC) strongly protects against the hypoxia/reoxygenation (H/R)-induced injury and apoptosis of cardiomyocytes. However, PC protection is ineffective in the aging cardiomyocytes. Whether H2S restores PC-induced cardioprotection by decrease of reactive oxygen species (ROS) level in the aging cardiomyocytes is unknown. METHODS: The aging cardiomyocytes were induced by treatment of primary cultures of neonatal cardiomyocytes using d-galactose and were exposed to H/R and PC protocols. Cell viability was observed by CCK-8 kit. Apoptosis was detected by Hoechst 33342 staining and flow cytometry. ROS level was analyzed using spectrofluorimeter. Related protein expressions were detected through Western blot. RESULTS: Treatment of NaHS (a H2S donor) protected against H/R-induced apoptosis, cell damage, the expression of cleaved caspase-3 and cleaved caspase-9, the release of cytochrome c (Cyt c). The supplementation of NaHS also decreased the activity of LDH and CK, MDA contents, ROS levels and the phosphorylation of IκBα, NF-κB, JNK2 and STAT3, and increased cell viability, the expression of Bcl-2, the activity of SOD, CAT and GSH-PX. PC alone did not provide cardioprotection in H/R-treated aging cardiomyocytes, which was significantly restored by the addition of NaHS. The beneficial role of NaHS was similar to the supply of N-acetyl-cysteine (NAC, an inhibitor of ROS), Ammonium pyrrolidinedithiocarbamate (PDTC, an inhibitor of NF-κB) and AG 490 (an inhibitor of JNK2), respectively, during PC. CONCLUSION: Our results suggest that exogenous H2S contributes to recovery of PC-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2/STAT3 pathways in the aging cardiomyocytes.

20.
Int J Cardiol ; 220: 681-92, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27393850

RESUMO

BACKGROUND: Hydrogen sulfide (H2S), which is a member of the gasotransmitter family, plays an important physiological and pathological role in cardiovascular system. Ischemic post-conditioning (PC) provides myocardial protective effect in the young hearts but not in the aged hearts. Exogenous H2S restores PC-induced cardioprotection by inhibition of mitochondrial permeability transition pore (mPTP) in the aged hearts. However, whether H2S contributes to the recovery of PC-induced cardioprotection via up-regulation of autophagy in the aged hearts is unclear. METHODS: The isolated aged rat hearts (24-months-old, 450-500g) and aged cardiomyocytes-induced by d-galactose were exposed to an ischemia/reperfusion (I/R) and PC protocol. RESULTS: We found PC lost cardioprotection in the aged hearts and cardiomyocytes. NaHS (a H2S donor) significantly restored cardioprotection of PC through decreasing myocardial damage, infarct size, and apoptosis, improving cardiac function, increasing cell viability and autophagy in the aged hearts and cardiomyocytes. 3-MA (an autophagy inhibitor) abolished beneficial effect of NaHS in the aged hearts. In addition, in the aged cardiomyocytes, NaHS up-regulated AMPK/mTOR pathway, and the effect of NaHS on PC was similar to the overexpression of Atg 5, treatment of AICAR (an AMPK activator) or Rapamycin (a mTOR inhibitor, an autophagy activator), respectively. CONCLUSIONS: These results suggest that exogenous H2S restores cardioprotection from PC by up-regulation of autophagy via activation of AMPK/mTOR pathway in the aged hearts and cardiomyocytes.


Assuntos
Envelhecimento/fisiologia , Autofagia/fisiologia , Cardiotônicos/uso terapêutico , Sulfeto de Hidrogênio/uso terapêutico , Pós-Condicionamento Isquêmico/métodos , Recuperação de Função Fisiológica/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Autofagia/efeitos dos fármacos , Cardiotônicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Sulfeto de Hidrogênio/farmacologia , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Técnicas de Cultura de Órgãos , Distribuição Aleatória , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA