Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066773

RESUMO

Besides human red blood cells (RBC), a standard model used in AFM-single cell force spectroscopy (SCFS), little is known about apparent Young's modulus (Ea) or adhesion of animal RBCs displaying distinct cellular features. To close this knowledge gap, we probed chicken, horse, camel, and human fetal RBCs and compared data with human adults serving as a repository for future studies. Additionally, we assessed how measurements are affected under physiological conditions (species-specific temperature in autologous plasma vs. 25 °C in aqueous NaCl solution). In all RBC types, Ea decreased with increasing temperature irrespective of the suspension medium. In mammalian RBCs, adhesion increased with elevated temperatures and scaled with reported membrane sialic acid concentrations. In chicken only adhesion decreased with higher temperature, which we attribute to the lower AE-1 concentration allowing more membrane undulations. Ea decreased further in plasma at every test temperature, and adhesion was completely abolished, pointing to functional cell enlargement by adsorption of plasma components. This halo elevated RBC size by several hundreds of nanometers, blunted the thermal input, and will affect the coupling of RBCs with the flowing plasma. The study evidences the presence of a RBC surface layer and discusses the tremendous effects when RBCs are probed at physiological conditions.


Assuntos
Camelus/sangue , Adesão Celular/fisiologia , Galinhas/sangue , Eritrócitos/citologia , Cavalos/sangue , Microscopia de Força Atômica/métodos , Análise de Célula Única/métodos , Temperatura , Adulto , Animais , Membrana Celular/metabolismo , Humanos
2.
Angew Chem Int Ed Engl ; 60(10): 5063-5068, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369073

RESUMO

The ruthenium-based anticancer agent BOLD-100/KP1339 has shown promising results in several in vitro and in vivo tumour models as well as in early clinical trials. However, its mode of action remains to be fully elucidated. Recent evidence identified stress induction in the endoplasmic reticulum (ER) and concomitant down-modulation of HSPA5 (GRP78) as key drug effects. By exploiting the naturally formed adduct between BOLD-100 and human serum albumin as an immobilization strategy, we were able to perform target-profiling experiments that revealed the ribosomal proteins RPL10, RPL24, and the transcription factor GTF2I as potential interactors of this ruthenium(III) anticancer agent. Integrating these findings with proteomic profiling and transcriptomic experiments supported ribosomal disturbance and concomitant induction of ER stress. The formation of polyribosomes and ER swelling of treated cancer cells revealed by TEM validated this finding. Thus, the direct interaction of BOLD-100 with ribosomal proteins seems to accompany ER stress-induction and modulation of GRP78 in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Proteína Ribossômica L10/metabolismo , Proteínas Ribossômicas/metabolismo , Antineoplásicos/química , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Células HCT116 , Humanos , Compostos Organometálicos/química , Polirribossomos/metabolismo , Rutênio/química , Fatores de Transcrição TFII/metabolismo , Transcriptoma
3.
Int J Cancer ; 147(6): 1680-1693, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32064608

RESUMO

Ponatinib is a small molecule multi-tyrosine kinase inhibitor clinically approved for anticancer therapy. Molecular mechanisms by which cancer cells develop resistance against ponatinib are currently poorly understood. Likewise, intracellular drug dynamics, as well as potential microenvironmental factors affecting the activity of this compound are unknown. Cell/molecular biological and analytical chemistry methods were applied to investigate uptake kinetics/subcellular distribution, the role of lipid droplets (LDs) and lipoid microenvironment compartments in responsiveness of FGFR1-driven lung cancer cells toward ponatinib. Selection of lung cancer cells for acquired ponatinib resistance resulted in elevated intracellular lipid levels. Uncovering intrinsic ponatinib fluorescence enabled dissection of drug uptake/retention kinetics in vitro as well as in mouse tissue cryosections, and revealed selective drug accumulation in LDs of cancer cells. Pharmacological LD upmodulation or downmodulation indicated that the extent of LD formation and consequent ponatinib incorporation negatively correlated with anticancer drug efficacy. Co-culturing with adipocytes decreased ponatinib levels and fostered survival of cancer cells. Ponatinib-selected cancer cells exhibited increased LD levels and enhanced ponatinib deposition into this organelle. Our findings demonstrate intracellular deposition of the clinically approved anticancer compound ponatinib into LDs. Furthermore, increased LD biogenesis was identified as adaptive cancer cell-defense mechanism via direct drug scavenging. Together, this suggests that LDs represent an underestimated organelle influencing intracellular pharmacokinetics and activity of anticancer tyrosine kinase inhibitors. Targeting LD integrity might constitute a strategy to enhance the activity not only of ponatinib, but also other clinically approved, lipophilic anticancer therapeutics.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imidazóis/farmacocinética , Gotículas Lipídicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Piridazinas/farmacocinética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Imidazóis/uso terapêutico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Angew Chem Int Ed Engl ; 59(39): 17130-17136, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32633820

RESUMO

AuIII complexes with N-heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII -NHC complexes by direct oxidation with radioactive [124 I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII -to-AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII -NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.


Assuntos
Antineoplásicos/farmacologia , Ouro/farmacologia , Compostos Heterocíclicos/farmacologia , Metano/análogos & derivados , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Compostos Heterocíclicos/química , Humanos , Radioisótopos do Iodo , Ligantes , Metano/química , Metano/farmacologia , Camundongos , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Células Tumorais Cultivadas
5.
JACS Au ; 3(2): 419-428, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873697

RESUMO

In this study, we present a workflow that enables spatial single-cell metallomics in tissue decoding the cellular heterogeneity. Low-dispersion laser ablation in combination with inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS) provides mapping of endogenous elements with cellular resolution at unprecedented speed. Capturing the heterogeneity of the cellular population by metals only is of limited use as the cell type, functionality, and cell state remain elusive. Therefore, we expanded the toolbox of single-cell metallomics by integrating the concepts of imaging mass cytometry (IMC). This multiparametric assay successfully utilizes metal-labeled antibodies for cellular tissue profiling. One important challenge is the need to preserve the original metallome in the sample upon immunostaining. Therefore, we studied the impact of extensive labeling on the obtained endogenous cellular ionome data by quantifying elemental levels in consecutive tissue sections (with and without immunostaining) and correlating elements with structural markers and histological features. Our experiments showed that the elemental tissue distribution remained intact for selected elements such as sodium, phosphorus, and iron, while absolute quantification was precluded. We hypothesize that this integrated assay not only advances single-cell metallomics (enabling to link metal accumulation to multi-dimensional characterization of cells/cell populations), but in turn also enhances selectivity in IMC, as in selected cases, labeling strategies can be validated by elemental data. We showcase the power of this integrated single-cell toolbox using an in vivo tumor model in mice and provide mapping of the sodium and iron homeostasis as linked to different cell types and function in mouse organs (such as spleen, kidney, and liver). Phosphorus distribution maps added structural information, paralleled by the DNA intercalator visualizing the cellular nuclei. Overall, iron imaging was the most relevant addition to IMC. In tumor samples, for example, iron-rich regions correlated with high proliferation and/or located blood vessels, which are key for potential drug delivery.

6.
Pharmaceutics ; 15(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839999

RESUMO

For a variety of cancer types, platinum compounds are still among the best treatment options. However, their application is limited by side effects and drug resistance. Consequently, multi-targeted platinum(IV) prodrugs that target specific traits of the malignant tissue are interesting new candidates. Recently, cisPt(PhB)2 was synthesized which, upon reduction in the malignant tissue, releases phenylbutyrate (PhB), a metabolically active fatty acid analog, in addition to cisplatin. In this study, we in-depth investigated the anticancer properties of this new complex in cell culture and in mouse allograft experiments. CisPt(PhB)2 showed a distinctly improved anticancer activity compared to cisplatin as well as to PhB alone and was able to overcome various frequently occurring drug resistance mechanisms. Furthermore, we observed that differences in the cellular fatty acid metabolism and mitochondrial activity distinctly impacted the drug's mode of action. Subsequent analyses revealed that "Warburg-like" cells, which are characterized by deficient mitochondrial function and fatty acid catabolism, are less capable of coping with cisPt(PhB)2 leading to rapid induction of a non-apoptotic form of cell death. Summarizing, cisPt(PhB)2 is a new orally applicable platinum(IV) prodrug with promising activity especially against cisplatin-resistant cancer cells with "Warburg-like" properties.

7.
Adv Sci (Weinh) ; 10(32): e2301939, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37752764

RESUMO

The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.


Assuntos
Antineoplásicos , Histonas , Compostos Organometálicos , Humanos , Histonas/metabolismo , Metabolismo dos Lipídeos , Acetilação , Acetilcoenzima A/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Lipídeos
8.
Cancers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36428694

RESUMO

Solitary fibrous tumor of the pleura (SFT) is a rare disease. Besides surgery combined with radiotherapy in nondisseminated stages, curative options are currently absent. Out of fourteen primo-cell cultures, established from surgical SFT specimens, two showed stable in vitro growth. Both cell models harbored the characteristic NAB2-STAT6 fusion and were further investigated by different preclinical methods assessing cell viability, clone formation, and protein regulation upon single-drug treatment or in response to selected treatment combinations. Both fusion-positive cell models showed-in line with the clinical experience and the literature-a low to moderate response to most of the tested cytotoxic and targeted agents. However, the multi-tyrosine kinase inhibitors ponatinib and dasatinib, as well as the anti-sarcoma compound trabectedin, revealed promising activity against SFT growth. Furthermore, both cell models spontaneously presented strong FGFR downstream signaling targetable by ponatinib. Most interestingly, the combination of either ponatinib or dasatinib with trabectedin showed synergistic effects. In conclusion, this study identified novel trabectedin-based treatment combinations with clinically approved tyrosine kinase inhibitors, using two newly established NAB2-STAT6 fusion-positive cell models. These findings can be the basis for anti-SFT drug repurposing approaches in this rare and therapy-refractory disease.

9.
Pharmaceutics ; 14(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35213972

RESUMO

Cellular energy metabolism is reprogrammed in cancer to fuel proliferation. In oncological therapy, treatment resistance remains an obstacle and is frequently linked to metabolic perturbations. Identifying metabolic changes as vulnerabilities opens up novel approaches for the prevention or targeting of acquired therapy resistance. Insights into metabolic alterations underlying ruthenium-based chemotherapy resistance remain widely elusive. In this study, colon cancer HCT116 and pancreatic cancer Capan-1 cells were selected for resistance against the clinically evaluated ruthenium complex sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (BOLD-100). Gene expression profiling identified transcriptional deregulation of carbohydrate metabolism as a response to BOLD-100 and in resistance against the drug. Mechanistically, acquired BOLD-100 resistance is linked to elevated glucose uptake and an increased lysosomal compartment, based on a defect in downstream autophagy execution. Congruently, metabolomics suggested stronger glycolytic activity, in agreement with the distinct hypersensitivity of BOLD-100-resistant cells to 2-deoxy-d-glucose (2-DG). In resistant cells, 2-DG induced stronger metabolic perturbations associated with ER stress induction and cytoplasmic lysosome deregulation. The combination with 2-DG enhanced BOLD-100 activity against HCT116 and Capan-1 cells and reverted acquired BOLD-100 resistance by synergistic cell death induction and autophagy disturbance. This newly identified enhanced glycolytic activity as a metabolic vulnerability in BOLD-100 resistance suggests the targeting of glycolysis as a promising strategy to support BOLD-100 anticancer activity.

10.
Cancers (Basel) ; 13(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34439283

RESUMO

BACKGROUND: Mass spectrometry-based metabolomics approaches provide an immense opportunity to enhance our understanding of the mechanisms that underpin the cellular reprogramming of cancers. Accurate comparative metabolic profiling of heterogeneous conditions, however, is still a challenge. METHODS: Measuring both intracellular and extracellular metabolite concentrations, we constrain four instances of a thermodynamic genome-scale metabolic model of the HCT116 colorectal carcinoma cell line to compare the metabolic flux profiles of cells that are either sensitive or resistant to ruthenium- or platinum-based treatments with BOLD-100/KP1339 and oxaliplatin, respectively. RESULTS: Normalizing according to growth rate and normalizing resistant cells according to their respective sensitive controls, we are able to dissect metabolic responses specific to the drug and to the resistance states. We find the normalization steps to be crucial in the interpretation of the metabolomics data and show that the metabolic reprogramming in resistant cells is limited to a select number of pathways. CONCLUSIONS: Here, we elucidate the key importance of normalization steps in the interpretation of metabolomics data, allowing us to uncover drug-specific metabolic reprogramming during acquired metal-drug resistance.

11.
Dalton Trans ; 48(32): 12040-12049, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31292575

RESUMO

Quadruplex nucleic acids - DNA/RNA secondary structures formed in guanine rich sequences - proved to have key roles in the biology of cancers and, as such, in recent years they emerged as promising targets for small molecules. Many reports demonstrated that metal complexes can effectively stabilize quadruplex structures, promoting telomerase inhibition, downregulation of the expression of cancer-related genes and ultimately cancer cell death. Although extensively explored as anticancer agents, studies on the ability of ruthenium arene complexes to interact with quadruplex nucleic acids are surprisingly almost unknown. Herein, we report on the synthesis and characterization of four novel Ru(ii) arene complexes with 1,3-dioxoindan-2-carboxamides ligands bearing pendant naphthyl-groups designed to bind quadruplexes by both stacking and coordinating interactions. We show how improvements on the hydrolytic stability of such complexes, by substituting the chlorido leaving ligand with pyridine, have a dramatic impact on their interaction with quadruplexes and on their cytotoxicity against ovarian cancer cells.


Assuntos
Antineoplásicos/farmacologia , Calixarenos/farmacologia , Complexos de Coordenação/farmacologia , Quadruplex G , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Calixarenos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Oncotarget ; 9(39): 25661-25680, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29876015

RESUMO

Destruxins, secondary metabolites of entomopathogenic fungi, exert a wide variety of interesting characteristics ranging from antiviral to anticancer effects. Although their mode of action was evaluated previously, the molecular mechanisms of resistance development are unknown. Hence, we have established destruxin-resistant sublines of HCT116 colon carcinoma cells by selection with the most prevalent derivatives, destruxin (dtx)A, dtxB and dtxE. Various cell biological and molecular techniques were applied to elucidate the regulatory mechanisms underlying these acquired and highly stable destruxin resistance phenotypes. Interestingly, well-known chemoresistance-mediating ABC efflux transporters were not the major players. Instead, in dtxA- and dtxB-resistant cells a hyper-activated mevalonate pathway was uncovered resulting in increased de-novo cholesterol synthesis rates and elevated levels of lanosterol, cholesterol as well as several oxysterol metabolites. Accordingly, inhibition of the mevalonate pathway at two different steps, using either statins or zoledronic acid, significantly reduced acquired but also intrinsic destruxin resistance. Vice versa, cholesterol supplementation protected destruxin-sensitive cells against their cytotoxic activity. Additionally, an increased cell membrane adhesiveness of dtxA-resistant as compared to parental cells was detected by atomic force microscopy. This was paralleled by a dramatically reduced ionophoric capacity of dtxA in resistant cells when cultured in absence but not in presence of statins. Summarizing, our results suggest a reduced ionophoric activity of destruxins due to cholesterol-mediated plasma membrane re-organization as molecular mechanism underlying acquired destruxin resistance in human colon cancer cells. Whether this mechanism might be valid also in other cell types and organisms exposed to destruxins e.g. as bio-insecticides needs to be evaluated.

13.
ChemMedChem ; 11(21): 2410-2421, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27706901

RESUMO

Tyrosine kinase inhibitors (TKIs), which have revolutionized cancer therapy over the past 15 years, are limited in their clinical application due to serious side effects. Therefore, we converted two approved TKIs (sunitinib and erlotinib) into 2-nitroimidazole-based hypoxia-activatable prodrugs. Kinetics studies showed very different stabilities over 24 h; however, fast reductive activation via E. coli nitroreductase could be confirmed for both panels. The anticancer activity and signaling inhibition of the compounds against various human cancer cell lines were evaluated in cell culture. These data, together with molecular docking simulations, revealed distinct differences in the impact of structural modifications on drug binding to the enzymes: whereas the catalytic pocket of the epidermal growth factor receptor (EGFR) accepted all new erlotinib derivatives, the vascular endothelial growth factor receptor (VEGFR)-inhibitory potential in the case of the sunitinib prodrugs was dramatically diminished by derivatization. In line, hypoxia dependency of ERK signaling inhibition was observed with the sunitinib prodrugs, while oxygen levels had no impact on the activity of the erlotinib derivatives. Overall, proof of principle could be shown for this concept, and the results obtained are an important basis for the future development of tyrosine kinase inhibitor prodrugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA