Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Physiol ; 190(3): 1997-2016, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35946757

RESUMO

Exposure of Arabidopsis (Arabidopsis thaliana) to 4°C imprints a cold memory that modulates gene expression in response to a second (triggering) stress stimulus applied several days later. Comparison of plastid transcriptomes of cold-primed and control plants directly before they were exposed to the triggering stimulus showed downregulation of several subunits of chloroplast NADPH dehydrogenase (NDH) and regulatory subunits of ATP synthase. NDH is, like proton gradient 5 (PGR5)-PGR5-like1 (PGRL1), a thylakoid-embedded, ferredoxin-dependent plastoquinone reductase that protects photosystem I and stabilizes ATP synthesis by cyclic electron transport (CET). Like PGRL1A and PGRL1B transcript levels, ndhA and ndhD transcript levels decreased during the 24-h long priming cold treatment. PGRL1 transcript levels were quickly reset in the postcold phase, but expression of ndhA remained low. The transcript abundances of other ndh genes decreased within the next days. Comparison of thylakoid-bound ascorbate peroxidase (tAPX)-free and transiently tAPX-overexpressing or tAPX-downregulating Arabidopsis lines demonstrated that ndh expression is suppressed by postcold induction of tAPX. Four days after cold priming, when tAPX protein accumulation was maximal, NDH activity was almost fully lost. Lack of the NdhH-folding chaperonin Crr27 (Cpn60ß4), but not lack of the NDH activity modulating subunits NdhM, NdhO, or photosynthetic NDH subcomplex B2 (PnsB2), strengthened priming regulation of zinc finger of A. thaliana 10, which is a nuclear-localized target gene of the tAPX-dependent cold-priming pathway. We conclude that cold-priming modifies chloroplast-to-nucleus stress signaling by tAPX-mediated suppression of NDH-dependent CET and that plastid-encoded NdhH, which controls subcomplex A assembly, is of special importance for memory stabilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Arabidopsis/genética , Arabidopsis/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Transporte de Elétrons , Trifosfato de Adenosina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Membrana/metabolismo
2.
Mol Plant Microbe Interact ; 35(7): 627-637, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35345887

RESUMO

Chloroplasts serve as cold priming hubs modulating the transcriptional response of Arabidopsis thaliana to a second cold stimulus for several days by postcold accumulation of thylakoid ascorbate peroxidases (tAPX). In an attempt to investigate cross-priming effects of cold on plant pathogen protection, we show here that such a single 24-h cold treatment at 4°C decreased the susceptibility of Arabidopsis to virulent Pseudomonas syringae pv. tomato DC3000 but did not alter resistance against the avirulent P. syringae pv. tomato avRPM1 and P. syringae pv. tomato avrRPS4 strains or the effector-deficient P. syringae pv. tomato strain hrcC-. The effect of cold priming against P. syringae pv. tomato was active immediately after cold exposure and memorized for at least 5 days. The priming benefit was established independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) or activation of the immune-related genes NHL10, FRK1, ICS1 and PR1 but required thylakoid-bound as well as stromal ascorbate peroxidase activities because the effect was absent or weak in corresponding knock-out-lines. Suppression of tAPX postcold regulation in a conditional-inducible tAPX-RNAi line led to increased bacterial growth numbers. This highlights that the plant immune system benefits from postcold regeneration of the protective chloroplast peroxidase system.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Temperatura Baixa , Doenças das Plantas , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Peroxidases/genética , Peroxidases/metabolismo , Doenças das Plantas/microbiologia , Plastídeos/enzimologia , Plastídeos/genética , Pseudomonas syringae/patogenicidade
3.
J Exp Bot ; 72(20): 7163-7179, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34185054

RESUMO

Cold-priming uncouples cold and light regulation of otherwise tightly co-regulated genes. In this study, we focused on the early regulatory processes in Arabidopsis within the first 2 h in cold and in high light after a 5-d lag-phase at 20 °C and 24 h cold-priming at 4 °C. Priming quickly modified gene expression in a trigger-specific manner. In the early stress-response phase during cold and high-light triggering, it reduced the regulatory amplitudes of many up- and down-regulated genes. A third of the priming-regulated genes were jasmonate-sensitive, including the full set of genes required for oxylipin biosynthesis. Analysis of wild-type and mutant plants based on qPCR demonstrated that biosynthesis of the jasmonic acid (JA) precursor 12-oxo phytenoic acid (OPDA) relative to the availability of JA dampened the response of the genes for oxylipin biosynthesis. In oxylipin biosynthetic mutants, cold-priming more strongly affected genes involved in the biosynthesis of OPDA than in its conversion to JA. In addition, priming-dependent dampening of the triggering response was more linked to OPDA than to regulation of the JA concentration. Spray application of OPDA prior to triggering counteracted the priming effect. Regulation of the oxylipin hub was controlled by modulation of the oxylipin-sensitivity of the genes for OPDA biosynthesis, but it was insensitive to priming-induced accumulation of thylakoid ascorbate peroxidase, thus identifying a parallel-acting cold-priming pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Ácidos Graxos Insaturados , Regulação da Expressão Gênica de Plantas , Oxilipinas
4.
BMC Plant Biol ; 20(1): 281, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552683

RESUMO

BACKGROUND: The majority of stress-sensitive genes responds to cold and high light in the same direction, if plants face the stresses for the first time. As shown recently for a small selection of genes of the core environmental stress response cluster, pre-treatment of Arabidopsis thaliana with a 24 h long 4 °C cold stimulus modifies cold regulation of gene expression for up to a week at 20 °C, although the primary cold effects are reverted within the first 24 h. Such memory-based regulation is called priming. Here, we analyse the effect of 24 h cold priming on cold regulation of gene expression on a transcriptome-wide scale and investigate if and how cold priming affects light regulation of gene expression. RESULTS: Cold-priming affected cold and excess light regulation of a small subset of genes. In contrast to the strong gene co-regulation observed upon cold and light stress in non-primed plants, most priming-sensitive genes were regulated in a stressor-specific manner in cold-primed plant. Furthermore, almost as much genes were inversely regulated as co-regulated by a 24 h long 4 °C cold treatment and exposure to heat-filtered high light (800 µmol quanta m- 2 s- 1). Gene ontology enrichment analysis revealed that cold priming preferentially supports expression of genes involved in the defence against plant pathogens upon cold triggering. The regulation took place on the cost of the expression of genes involved in growth regulation and transport. On the contrary, cold priming resulted in stronger expression of genes regulating metabolism and development and weaker expression of defence genes in response to high light triggering. qPCR with independently cultivated and treated replicates confirmed the trends observed in the RNASeq guide experiment. CONCLUSION: A 24 h long priming cold stimulus activates a several days lasting stress memory that controls cold and light regulation of gene expression and adjusts growth and defence regulation in a stressor-specific manner.


Assuntos
Arabidopsis/fisiologia , Temperatura Baixa , Expressão Gênica/fisiologia , Luz , Transcriptoma/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Expressão Gênica/efeitos da radiação
5.
Plant Cell Environ ; 42(3): 782-800, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29974962

RESUMO

Cold is a major stressor, which limits plant growth and development in many parts of the world, especially in the temperate climate zones. A large number of experimental studies has demonstrated that not only acclimation and entrainment but also the experience of single short stress events of various abiotic or biotic kinds (priming stress) can improve the tolerance of plants to chilling temperatures. This process, called priming, depends on a stress "memory". It does not change cold sensitivity per se but beneficially modifies the response to cold and can last for days, months, or even longer. Elicitor factors and antagonists accumulate due to increased biosynthesis or decreased degradation either during or after the priming stimulus. Comparison of priming studies investigating improved tolerance to chilling temperatures highlighted key regulatory functions of ROS/RNS and antioxidant enzymes, plant hormones, especially jasmonates, salicylates, and abscisic acid, and signalling metabolites, such as ß- and γ-aminobutyric acid (BABA and GABA) and melatonin. We conclude that these elicitors and antagonists modify local and systemic cold tolerance by integration into cold-induced signalling cascades.


Assuntos
Adaptação Fisiológica/fisiologia , Resposta ao Choque Frio/fisiologia , Fenômenos Fisiológicos Vegetais , Temperatura Baixa
6.
BMC Plant Biol ; 17(1): 144, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835225

RESUMO

BACKGROUND: The Arabidopsis ERFIb / RAP2.4 transcription factor family consists of eight members with highly conserved DNA binding domains. Selected members have been characterized individually, but a systematic comparison is pending. The redox-sensitive transcription factor RAP2.4a mediates chloroplast-to-nucleus redox signaling and controls induction of the three most prominent chloroplast peroxidases, namely 2-Cys peroxiredoxin A (2CPA) and thylakoid- and stromal ascorbate peroxidase (tAPx and sAPx). To test the specificity and redundancy of RAP2.4 transcription factors in the regulation of genes for chloroplast peroxidases, we compared the DNA-binding sites of the transcription factors in tertiary structure models, analyzed transcription factor and target gene regulation by qRT-PCR in RAP2.4, 2-Cys peroxiredoxin and ascorbate peroxidase T-DNA insertion lines and RAP2.4 overexpressing lines of Arabidopsis thaliana and performed promoter binding studies. RESULTS: All RAP2.4 proteins bound the tAPx promoter, but only the four RAP2.4 proteins with identical DNA contact sites, namely RAP2.4a, RAP2.4b, RAP2.4d and RAP2.4h, interacted stably with the redox-sensitive part of the 2CPA promoter. Gene expression analysis in RAP2.4 knockout lines revealed that RAP2.4a is the only one supporting 2CPA and chloroplast APx expression. Rap2.4h binds to the same promoter region as Rap2.4a and antagonizes 2CPA expression. Like the other six RAP2.4 proteins, Rap2.4 h promotes APx mRNA accumulation. Chloroplast ROS signals induced RAP2.4b and RAP2.4d expression, but these two transcription factor genes are (in contrast to RAP2.4a) insensitive to low 2CP availability, and their expression decreased in APx knockout lines. RAP2.4e and RAP2.4f gradually responded to chloroplast APx availability and activated specifically APx expression. These transcription factors bound, like RAP2.4c and RAP2.4g, the tAPx promoter, but hardly the 2CPA promoter. CONCLUSIONS: The RAP2.4 transcription factors form an environmentally and developmentally regulated transcription factor network, in which the various members affect the expression intensity of the others. Within the transcription factor family, RAP2.4a has a unique function as a general transcriptional activator of chloroplast peroxidase activity. The other RAP2.4 proteins mediate the fine-control and adjust the relative availability of 2CPA, sAPx and tAPx.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peroxidases/genética , Fatores de Transcrição/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Ascorbato Peroxidases/genética , Sítios de Ligação , Cloroplastos/enzimologia , DNA/metabolismo , DNA Bacteriano , Redes Reguladoras de Genes , Peroxirredoxinas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Técnicas do Sistema de Duplo-Híbrido
7.
BMC Plant Biol ; 16(1): 163, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27439459

RESUMO

BACKGROUND: Short cold periods comprise a challenge to plant growth and development. Series of cold stresses improve plant performance upon a future cold stress. This effect could be provoked by priming, training or acclimation dependent hardening. Here, we compared the effect of 24 h (short priming stimulus) and of 2 week long cold-pretreatment (long priming stimulus) on the response of Arabidopsis thaliana to a single 24 h cold stimulus (triggering) after a 5 day long lag-phase, to test Arabidopsis for cold primability. RESULTS: Three types of pretreatment dependent responses were observed: (1) The CBF-regulon controlled gene COR15A was stronger activated only after long-term cold pretreatment. (2) The non-chloroplast specific stress markers PAL1 and CHS were more induced by cold after long-term and slightly stronger expressed after short-term cold priming. (3) The chloroplast ROS signaling marker genes ZAT10 and BAP1 were less activated by the triggering stimulus in primed plants. The effects on ZAT10 and BAP1 were more pronounced in 24 h cold-primed plants than in 14 day long cold-primed ones demonstrating independence of priming from induction and persistence of primary cold acclimation responses. Transcript and protein abundance analysis and studies in specific knock-out lines linked the priming-specific regulation of ZAT10 and BAP1 induction to the priming-induced long-term regulation of stromal and thylakoid-bound ascorbate peroxidase (sAPX and tAPX) expression. CONCLUSION: The plastid antioxidant system, especially, plastid ascorbate peroxidase regulation, transmits information on a previous cold stress over time without the requirement of establishing cold-acclimation. We hypothesize that the plastid antioxidant system serves as a priming hub and that priming-dependent regulation of chloroplast-to-nucleus ROS signaling is a strategy to prepare plants under unstable environmental conditions against unpredictable stresses by supporting extra-plastidic stress protection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ascorbato Peroxidases/metabolismo , Regulação da Expressão Gênica de Plantas , Plastídeos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas das Membranas dos Tilacoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ascorbato Peroxidases/genética , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , Cloroplastos/genética , Cloroplastos/metabolismo , Temperatura Baixa , Estresse Oxidativo , Plastídeos/genética , Plastídeos/metabolismo , Proteínas das Membranas dos Tilacoides/genética , Tilacoides/enzimologia , Tilacoides/genética , Tilacoides/metabolismo
8.
Plant Signal Behav ; 19(1): 2300239, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38170666

RESUMO

24 h cold exposure (4°C) is sufficient to reduce pathogen susceptibility in Arabidopsis thaliana against the virulent Pseudomonas syringae pv. tomato (Pst) strain even when the infection occurs five days later. This priming effect is independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) and can be observed in the immune-compromised eds1-2 null mutant. In contrast, cold priming-reduced Pst susceptibility is strongly impaired in knock-out lines of the stromal and thylakoid ascorbate peroxidases (sAPX/tAPX) highlighting their relevance for abiotic stress-related increased immune resilience. Here, we extended our analysis by generating an eds1 sapx double mutant. eds1 sapx showed eds1-like resistance and susceptibility phenotypes against Pst strains containing the effectors avrRPM1 and avrRPS4. In comparison to eds1-2, susceptibility against the wildtype Pst strain was constitutively enhanced in eds1 sapx. Although a prior cold priming exposure resulted in reduced Pst titers in eds1-2, it did not alter Pst resistance in eds1 sapx. This demonstrates that the genetic sAPX requirement for cold priming of basal plant immunity applies also to an eds1 null mutant background.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Imunidade Vegetal , Pseudomonas syringae , Tilacoides/metabolismo
9.
Physiol Plant ; 146(1): 53-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22339086

RESUMO

Photosynthesis is the predominant source of reactive oxygen species in light. In order to prevent the negative influence of reactive oxygen species (ROS) on cell functionality, chloroplasts have evolved a highly efficient antioxidant protection system. Here, we present the first study on natural variation in this system. Comparison of temperature and developmental responses in seven accessions of Arabidopsis thaliana from northern habitats showed that the regulation is widely genetically manifested, but hardly correlates with geographic parameters. Transcript, polysomal RNA (pRNA) and protein data showed that the ecotypes use different strategies to adjust the chloroplast antioxidative defense system, either by regulating transcript abundance or initiation of translation. Comparison of mRNA and pRNA levels showed that Col-0 invests more into transcript accumulation, while Van-0, WS and C24 regulates the chloroplast antioxidant protection system more on the level of pRNA. Nevertheless, both strategies of regulation led to the expression of chloroplast antioxidant enzymes at sufficient level to efficiently protect plants from ROS accumulation in Col-0, WS, C24 and Van-0. On the contrary, Cvi-0, Ms-0 and Kas-1 accumulated high amounts of ROS. The expression of copper/zinc superoxide dismutase (Csd2), ascorbate peroxidases and 2-Cys peroxiredoxins was higher in Cvi-0 on the transcriptional level, while Csd2, peroxiredoxin Q, type II peroxiredoxin E and glutathione peroxidase 1 were induced in Ms-0 on the mRNA level. Similar to Kas-1, in which mRNA levels were less than or similar to Col-0 gene, specific support for translation was observed in Ms-0, showing that the ecotypes use different strategies to adjust the antioxidant system.


Assuntos
Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloroplastos/genética , Ecótipo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Chuva , Temperatura
10.
BMC Plant Biol ; 10: 133, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20584316

RESUMO

BACKGROUND: Oxygenic photosynthesis is accompanied by the formation of reactive oxygen species (ROS), which damage proteins, lipids, DNA and finally limit plant yield. The enzymes of the chloroplast antioxidant system are exclusively nuclear encoded. During evolution, plastid and mitochondrial genes were post-endosymbiotically transferred to the nucleus, adapted for eukaryotic gene expression and post-translational protein targeting and supplemented with genes of eukaryotic origin. RESULTS: Here, the genomes of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana were screened for ORFs encoding chloroplast peroxidases. The identified genes were compared for their amino acid sequence similarities and gene structures. Stromal and thylakoid-bound ascorbate peroxidases (APx) share common splice sites demonstrating that they evolved from a common ancestral gene. In contrast to most cormophytes, our results predict that chloroplast APx activity is restricted to the stroma in Chlamydomonas and to thylakoids in Physcomitrella. The moss gene is of retrotransposonal origin.The exon-intron-structures of 2CP genes differ between chlorophytes and streptophytes indicating an independent evolution. According to amino acid sequence characteristics only the A-isoform of Chlamydomonas 2CP may be functionally equivalent to streptophyte 2CP, while the weakly expressed B- and C-isoforms show chlorophyte specific surfaces and amino acid sequence characteristics. The amino acid sequences of chloroplast PrxII are widely conserved between the investigated species. In the analyzed streptophytes, the genes are unspliced, but accumulated four introns in Chlamydomonas. A conserved splice site indicates also a common origin of chlorobiont PrxQ.The similarity of splice sites also demonstrates that streptophyte glutathione peroxidases (GPx) are of common origin. Besides a less related cysteine-type GPx, Chlamydomonas encodes two selenocysteine-type GPx. The latter were lost prior or during streptophyte evolution. CONCLUSION: Throughout plant evolution, there was a strong selective pressure on maintaining the activity of all three investigated types of peroxidases in chloroplasts. APx evolved from a gene, which dates back to times before differentiation of chlorobionts into chlorophytes and streptophytes, while Prx and presumably also GPx gene patterns may have evolved independently in the streptophyte and chlorophyte branches.


Assuntos
Arabidopsis , Bryopsida , Chlamydomonas reinhardtii , Cloroplastos/enzimologia , Peroxidases/genética , Peroxidases/metabolismo , Selaginellaceae , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Ascorbato Peroxidases , Bryopsida/enzimologia , Bryopsida/genética , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Mineração de Dados , Bases de Dados de Proteínas , Éxons/genética , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Glutationa Peroxidase/química , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Íntrons/genética , Modelos Moleculares , Dados de Sequência Molecular , Peroxidases/química , Peroxirredoxinas/química , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Filogenia , Estrutura Terciária de Proteína , Sementes/genética , Sementes/metabolismo , Selaginellaceae/enzimologia , Selaginellaceae/genética , Alinhamento de Sequência
11.
Methods Mol Biol ; 2156: 241-254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607985

RESUMO

Cold slows down Calvin cycle activity stronger than photosynthetic electron transport, which supports production of reactive oxygen species (ROS). Even under extreme temperature conditions, most ROS are detoxified by the combined action of low-molecular weight antioxidants and antioxidant enzymes. Subsequent regeneration of the low-molecular weight antioxidants by NAD(P)H and thioredoxin/thiol-dependent pathways relaxes the electron pressure in the photosynthetic electron transport chain. In general, the chloroplast antioxidant system protects plants from severe damage of enzymes, metabolites, and cellular structures by both ROS detoxification and antioxidant recycling. Various methods have been developed to quantify ROS and antioxidant levels in photosynthetic tissues. Here, we summarize a series of exceptionally fast and easily applicable methods that show local ROS accumulation and provide information on the overall availability of reducing sugars, mainly ascorbate, and of thiols.


Assuntos
Aclimatação , Antioxidantes/metabolismo , Temperatura Baixa , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Fenótipo
12.
Sci Rep ; 9(1): 3022, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816299

RESUMO

24 h exposure to 4 °C primes Arabidopsis thaliana in the pre-bolting rosette stage for several days against full cold activation of the ROS responsive genes ZAT10 and BAP1 and causes stronger cold-induction of pleiotropically stress-regulated genes. Transient over-expression of thylakoid ascorbate peroxidase (tAPX) at 20 °C mimicked and tAPX transcript silencing antagonized cold-priming of ZAT10 expression. The tAPX effect could not be replaced by over-expression of stromal ascorbate peroxidase (sAPX) demonstrating that priming is specific to regulation of tAPX availability and, consequently, regulated locally at the thylakoid membrane. Arabidopsis acquired cold primability in the early rosette stage between 2 and 4 weeks. During further rosette development, primability was widely maintained in the oldest leaves. Later formed and later maturing leaves were not primable demonstrating that priming is stronger regulated with plant age than with leaf age. In 4-week-old plants, which were strongest primable, the memory was fully erasable and lost seven days after priming. In summary, we conclude that cold-priming of chloroplast-to-nucleus ROS signalling by transient post-stress induction of tAPX transcription is a strategy to modify cell signalling for some time without affecting the alertness for activation of cold acclimation responses.


Assuntos
Cloroplastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tilacoides/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Peroxidases/metabolismo , Folhas de Planta/metabolismo , Transdução de Sinais/fisiologia
13.
BMC Plant Biol ; 8: 48, 2008 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-18439303

RESUMO

BACKGROUND: The regulation of the chloroplast antioxidant capacity depends on nuclear gene expression. For the 2-Cys peroxiredoxin-A gene (2CPA) a cis-regulatory element was recently characterized, which responds to photosynthetic redox signals. RESULTS: In a yeast-one-hybrid screen for cis-regulatory binding proteins, the transcription factor Rap2.4a was isolated. Rap2.4a controls the transcript abundance of the prominent chloroplast antioxidant enzyme through binding to the CGCG core of a CE3-like element. Rap2.4a activity is regulated by dithiol/disulfide transition of regulatory cysteinyl residues and subsequent changes in the quaternary structure. The mid-point redox potential of Rap2.4a activation is -269 mV (pH 7.0). CONCLUSION: The redox sensitivity of Rap2.4a establishes an efficient switch mechanism for redox control of nuclear gene activity of chloroplast antioxidants, in which Rap2.4 is a redox-sensor and a transducer of redox information.


Assuntos
Antioxidantes/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/enzimologia , Peroxirredoxinas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Sítios de Ligação , Núcleo Celular/genética , DNA Bacteriano/metabolismo , Meio Ambiente , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Oxirredução , Peroxirredoxinas/genética , Fenótipo , Regiões Promotoras Genéticas/genética , Estrutura Quaternária de Proteína , Transporte Proteico , Protoplastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificação , Transcrição Gênica , Ativação Transcricional/genética
14.
J Biotechnol ; 129(2): 229-48, 2007 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-17207878

RESUMO

Redox regulation is a central control element in cell metabolism. It is employed to adjust photosynthesis and the antioxidant defence system of leaves to the prevailing environment. During recent years progress has been made in describing the redox-dependent alterations in metabolism, the thiol/disulfide proteome, the redox-dependent and cross-talking signalling pathways and the target genes of redox regulation. Some transcription factors have been identified as proteins that perform thiol/disulfide transitions linked to the redox-regulation of specific plant promoters. In addition first mathematical models have been designed to simulate antioxidant defence and predict its response. Taken together, a profound experimental data set has been generated which allows to approach a systems biology type of understanding of antioxidant defence in photosynthesising cells in the near future. Since oxidative stress is likely to limit plant growth under stress, such a systematic understanding of antioxidant defence will help to define novel targets for breeding stress-tolerant plants.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredução , Biologia de Sistemas , Antioxidantes/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse Oxidativo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
Sci Rep ; 7: 44055, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276450

RESUMO

Priming improves an organism's performance upon a future stress. To test whether cold priming supports protection in spring and how it is affected by cold acclimation, we compared seven Arabidopsis accessions with different cold acclimation potentials in the field and in the greenhouse for growth, photosynthetic performance and reproductive fitness in March and May after a 14 day long cold-pretreatment at 4 °C. In the plants transferred to the field in May, the effect of the cold pretreatment on the seed yield correlated with the cold acclimation potential of the accessions. In the March transferred plants, the reproductive fitness was most supported by the cold pretreatment in the accessions with the weakest cold acclimation potential. The fitness effect was linked to long-term effects of the cold pretreatment on photosystem II activity stabilization and leaf blade expansion. The study demonstrated that cold priming stronger impacts on plant fitness than cold acclimation in spring in accessions with intermediate and low cold acclimation potential.


Assuntos
Aclimatação/fisiologia , Arabidopsis/crescimento & desenvolvimento , Temperatura Baixa , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/crescimento & desenvolvimento
16.
Front Plant Sci ; 8: 1650, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018463

RESUMO

The redox imbalanced 6 mutant (rimb6) of Arabidopsis thaliana was isolated in a genetic screening approach for mutants with defects in chloroplast-to-nucleus redox signaling. It has an atypically low activation status of the 2-Cys peroxiredoxin-A promoter in the seedling stage. rimb6 shows wildtype-like germination, seedling development and greening, but slower growth and reduced biomass in the rosette stage. Mapping of the casual mutation revealed that rimb6 carries a single nucleotide polymorphism in the gene encoding CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED (PR) GENES 1, CPR1 (At4g12560), leading to a premature stop codon. CPR1 is known as a repressor of pathogen signaling and regulator of microtubule organization. Allelism of rimb6 and cpr1 revealed a function of CPR1 in chloroplast stress protection. Expression studies in pathogen signaling mutants demonstrated that CPR1-mediated activation of genes for photosynthesis and chloroplast antioxidant protection is, in contrast to activation of pathogen responses, regulated independently from PAD4-controlled salicylic acid (SA) accumulation. We conclude that the support of plastid function is a basic, SA-independent function of CPR1.

17.
BMC Plant Biol ; 6: 15, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16916444

RESUMO

BACKGROUND: To coordinate metabolite fluxes and energy availability, plants adjust metabolism and gene expression to environmental changes through employment of interacting signalling pathways. RESULTS: Comparing the response of Arabidopsis wild-type plants with that of the mutants adg1, pgr1 and vtc1 upon altered CO2-availability, the regulatory role of the cellular energy status, photosynthetic electron transport, the redox state and concentration of ascorbate and glutathione and the assimilatory force was analyzed in relation to the transcript abundance of stress-responsive nuclear encoded genes and psaA and psbA encoding the reaction centre proteins of photosystem I and II, respectively. Transcript abundance of Bap1, Stp1, psaA and psaB was coupled with seven metabolic parameters. Especially for psaA and psaB, the complex analysis demonstrated that the assumed PQ-dependent redox control is subordinate to signals linked to the relative availability of 3-PGA and DHAP, which define the assimilatory force. For the transcripts of sAPx and Csd2 high correlations with the calculated redox state of NADPH were observed in pgr1, but not in wild-type, suggesting that in wild-type plants signals depending on thylakoid acidification overlay a predominant redox-signal. Strongest correlation with the redox state of ascorbate was observed for 2CPA, whose transcript abundance regulation however was almost insensitive to the ascorbate content demonstrating dominance of redox regulation over metabolite sensing. CONCLUSION: In the mutants, signalling pathways are partially uncoupled, demonstrating dominance of metabolic control of photoreaction centre expression over sensing the redox state of the PQ-pool. The balance between the cellular redox poise and the energy signature regulates sAPx and Csd2 transcript abundance, while 2CPA expression is primarily redox-controlled.


Assuntos
Arabidopsis/genética , Monóxido de Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Clorofila A , Primers do DNA , Enzimas/metabolismo , Fotossíntese , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
18.
Front Plant Sci ; 7: 305, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014325

RESUMO

Temperature variations impact on the balance between photosynthetic electron transport and electron-consuming assimilation reactions and transiently increase generation of reactive oxygen species (ROS). Previous studies demonstrated that the expression of C-repeat binding factors (CBFs), which activate cold acclimation reactions, respond to chloroplast ROS signals and that cold deacclimation is partly halted for days after the transfer of acclimated plants to optimal growth conditions in four Arabidopsis accessions from cold-continental habitats. We hypothesized that these accessions differ from others in the regulation of the plastid antioxidant system (PAS). In the present study, we compared the expression intensity of the 12 most prominent PAS genes for peroxidases, superoxide dismutase and low molecular weight antioxidant regenerating enzymes in 10 Arabidopsis accessions with regulation of CBF and COR (cold regulated genes) transcript levels and cold-regulated metabolite levels prior to cold, after 2 week long cold acclimation and during the first 3 days of deacclimation. In the accessions with prolonged activation of cold responses, by trend, weaker induction of various cold-inducible PAS genes and stronger decreases in the expression of negatively cold-regulated PAS genes were observed. Low PAS gene expression delayed the post-cold decrease in H2O2 levels after transfer of the plants from cold to optimal growth conditions. We conclude that weaker expression of various PAS genes in the cold is an adapted strategy of the Arabidopsis accessions N14, N13, Ms-0, and Kas-1 to avoid full inactivation of cold-responses in the first days after the end of the cold period.

19.
Biol Rev Camb Philos Soc ; 91(4): 1118-1133, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26289992

RESUMO

Experience and memory of environmental stimuli that indicate future stress can prepare (prime) organismic stress responses even in species lacking a nervous system. The process through which such organisms prepare their phenotype for an improved response to future stress has been termed 'priming'. However, other terms are also used for this phenomenon, especially when considering priming in different types of organisms and when referring to different stressors. Here we propose a conceptual framework for priming of stress responses in bacteria, fungi and plants which allows comparison of priming with other terms, e.g. adaptation, acclimation, induction, acquired resistance and cross protection. We address spatial and temporal aspects of priming and highlight current knowledge about the mechanisms necessary for information storage which range from epigenetic marks to the accumulation of (dormant) signalling molecules. Furthermore, we outline possible patterns of primed stress responses. Finally, we link the ability of organisms to become primed for stress responses (their 'primability') with evolutionary ecology aspects and discuss which properties of an organism and its environment may favour the evolution of priming of stress responses.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico/fisiologia , Adaptação Fisiológica , Evolução Biológica , Ecologia
20.
Sci Rep ; 5: 12199, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26174584

RESUMO

During low temperature exposure, Arabidopsis thaliana and many other plants from temperate climates increase in freezing tolerance in a process termed cold acclimation. However, the correct timing and rate of deacclimation, resulting in loss of freezing tolerance and initiation of growth is equally important for plant fitness and survival. While the molecular basis of cold acclimation has been investigated in detail, much less information is available about deacclimation. We have characterized the responses of 10 natural accessions of Arabidopsis thaliana that vary widely in their freezing tolerance, to deacclimation conditions. Sugar, proline and transcript levels declined sharply over three days in all accessions after transfer of cold acclimated plants to ambient temperatures, while freezing tolerance only declined in tolerant accessions. Correlations between freezing tolerance and the expression levels of COR genes and the content of glucose, fructose and sucrose, as well as many correlations among transcript and solute levels, that were highly significant in cold acclimated plants, were lost during deacclimation. Other correlations persisted, indicating that after three days of deacclimation, plant metabolism had not completely reverted back to the non-acclimated state. These data provide the basis for further molecular and genetic studies to unravel the regulation of deacclimation.


Assuntos
Aclimatação/fisiologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Congelamento , Frutose/análise , Glucose/análise , Folhas de Planta/genética , Folhas de Planta/metabolismo , Rafinose/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA