Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Structure ; 12(10): 1909-18, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15458639

RESUMO

The transition state structures that link the stable end states of allosteric proteins are largely unresolved. We used single-molecule kinetic analysis to probe the dynamics of the M4 transmembrane segments during the closed<==>open isomerization of the neuromuscular acetylcholine receptor ion channel (AChR). We measured the slopes (phi) of the free energy relationships for 87 mutants, which reveal the open- versus closed-like characters of the mutated residues at the transition state and hence the sequence and organization of gating molecular motions. phi was constant throughout the length of the alpha subunit M4 segment with an average value of 0.54, suggesting that this domain moves as a unit, approximately midway through the reaction. Analysis of a hybrid construct indicates that the two alpha subunits move synchronously. Between subunits, the sequence of M4 motions is alpha-epsilon-beta. The AChR ion channel emerges as a dynamic nanomachine with many moving parts.


Assuntos
Ativação do Canal Iônico/fisiologia , Receptores Nicotínicos/química , Substituição de Aminoácidos/genética , Animais , Linhagem Celular , Membrana Celular/fisiologia , Eletrofisiologia , Humanos , Camundongos , Mutação/genética , Estrutura Terciária de Proteína/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/fisiologia
2.
J Gen Physiol ; 123(4): 341-56, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15051806

RESUMO

We used single-channel recording and model-based kinetic analyses to quantify the effects of mutations in the extracellular domain (ECD) of the alpha-subunit of mouse muscle-type acetylcholine receptors (AChRs). The crystal structure of an acetylcholine binding protein (AChBP) suggests that the ECD is comprised of a beta-sandwich core that is surrounded by loops. Here we focus on loops 2 and 7, which lie at the interface of the AChR extracellular and transmembrane domains. Side chain substitutions in these loops primarily affect channel gating by either decreasing or increasing the gating equilibrium constant. Many of the mutations to the beta-core prevent the expression of functional AChRs, but of the mutants that did express almost all had wild-type behavior. Rate-equilibrium free energy relationship analyses reveal the presence of two contiguous, distinct synchronously-gating domains in the alpha-subunit ECD that move sequentially during the AChR gating reaction. The transmitter-binding site/loop 5 domain moves first (Phi = 0.93) and is followed by the loop 2/loop 7 domain (Phi = 0.80). These movements precede that of the extracellular linker (Phi = 0.69). We hypothesize that AChR gating occurs as the stepwise movements of such domains that link the low-to-high affinity conformational change in the TBS with the low-to-high conductance conformational change in the pore.


Assuntos
Ativação do Canal Iônico/fisiologia , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Animais , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Nicotínicos/genética , Relação Estrutura-Atividade
3.
J Gen Physiol ; 122(5): 521-39, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14557402

RESUMO

Nicotinic acetylcholine receptor channel (AChR) gating is an organized sequence of molecular motions that couples a change in the affinity for ligands at the two transmitter binding sites with a change in the ionic conductance of the pore. Loop 5 (L5) is a nine-residue segment (mouse alpha-subunit 92-100) that links the beta4 and beta5 strands of the extracellular domain and that (in the alpha-subunit) contains binding segment A. Based on the structure of the acetylcholine binding protein, we speculate that in AChRs L5 projects from the transmitter binding site toward the membrane along a subunit interface. We used single-channel kinetics to quantify the effects of mutations to alphaD97 and other L5 residues with respect to agonist binding (to both open and closed AChRs), channel gating (for both unliganded and fully-liganded AChRs), and desensitization. Most alphaD97 mutations increase gating (up to 168-fold) but have little or no effect on ligand binding or desensitization. Rate-equilibrium free energy relationship analysis indicates that alphaD97 moves early in the gating reaction, in synchrony with the movement of the transmitter binding site (Phi = 0.93, which implies an open-like character at the transition state). alphaD97 mutations in the two alpha-subunits have unequal energetic consequences for gating, but their contributions are independent. We conclude that the key, underlying functional consequence of alphaD97 perturbations is to increase the unliganded gating equilibrium constant. L5 emerges as an important and early link in the AChR gating reaction which, in the absence of agonist, serves to increase the relative stability of the closed conformation of the protein.


Assuntos
Ativação do Canal Iônico/fisiologia , Receptores Colinérgicos/química , Receptores Colinérgicos/fisiologia , Sequência de Aminoácidos/fisiologia , Animais , Linhagem Celular , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína/fisiologia
4.
J Biol Chem ; 280(29): 27093-102, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15890656

RESUMO

Animal toxins are associated with well defined selectivity profiles; however the molecular basis for this property is not understood. To address this issue we refined our previous three-dimensional models of the complex between the sea anemone toxin BgK and the S5-S6 region of Kv1.1 (Gilquin, B., Racape, J., Wrisch, A., Visan, V., Lecoq, A., Grissmer, S., Ménez, A., and Gasparini, S. (2002) J. Biol. Chem. 277, 37406-37413) using a docking procedure that scores and ranks the structures by comparing experimental and back-calculated values of coupling free energies DeltaDeltaGint obtained from double-mutant cycles. These models further highlight the interaction between residue 379 of Kv1.1 and the conserved dyad tyrosine residue of BgK. Because the nature of the residue at position 379 varies from one channel subtype to another, we explored how these natural mutations influence the sensitivity of Kv1 channel subtypes to BgK using binding and electrophysiology experiments. We demonstrated that mutations at this single position indeed suffice to abolish or enhance the sensitivity of Kv1 channels for BgK and other sea anemone and scorpion toxins. Altogether, our data suggest that the residue at position 379 of Kv1 channels controls the affinity of a number of blocking toxins.


Assuntos
Venenos de Cnidários/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Venenos de Cnidários/química , Venenos de Cnidários/genética , Eletrofisiologia , Canal de Potássio Kv1.1 , Modelos Moleculares , Mutação , Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica/genética , Conformação Proteica , Escorpiões , Anêmonas-do-Mar , Superfamília Shaker de Canais de Potássio , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA