RESUMO
An open wound is highly susceptible to microbial infection leading to elevated level of inflammatory response. For prompt healing, a wound requires a biomimetic dressing material with ideal hydrophilicity and tensile strength, possessing antimicrobial and antioxidant property. Although PCL-based nanofibers have sufficient tensile strength and biocompatibility, it lacks in terms of optimum hydrophilicity and biodegradation. Therefore, we fabricated a PCL-gelatin based electrospun nanofibers, enriched with quercetin and ciprofloxacin hydrochloride (CH). The average diameter of developed nanofibers was 725.943⯱â¯201.965â¯nm, and devoid of chemical interaction between two drugs and polymers. CH and quercetin exhibited biphasic in-vitro release in phosphate buffer (pH 7.4). The in-vitro antibacterial and antioxidant property of scaffolds were evaluated by film-diffusion against Staphylococcus aureus and DPPH assay, respectively. The addition of gelatin along with CH and quercetin enhanced the hydrophilicity (contact angleâ¯=â¯48.8⯱â¯2.95°) and biodegradation rate of the nanofibers. In-vitro biocompatibility of scaffold was examined by hemocompatibility and fibroblast viability using MTT assay. The results confirm the direct application of scaffold in the wounded area. Further, complete closure of full-thickness wound within 16â¯days, and regulation of hydroxyproline, SOD and catalase level in granulation tissues following treatment with scaffold, confirmed its application for accelerated wound healing.