Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 27(2): 373-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23240629

RESUMO

Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across Europe (33 countries). On the basis of information available in the European Information System on FGR (EUFGIS Portal), species distribution maps, and environmental stratification of the continent, we developed ecogeographic indicators, a marginality index, and demographic indicators to assess and monitor forest conservation efforts. The pan-European network has 1967 conservation units, 2737 populations of target trees, and 86 species of target trees. We detected a poor coincidence between FGR conservation and other biodiversity conservation objectives within this network. We identified 2 complementary strategies: a species-oriented strategy in which national conservation networks are specifically designed for key target species and a site-oriented strategy in which multiple-target units include so-called secondary species conserved within a few sites. The network is highly unbalanced in terms of species representation, and 7 key target species are conserved in 60% of the conservation units. We performed specific gap analyses for 11 tree species, including assessment of ecogeographic, demographic, and genetic criteria. For each species, we identified gaps, particularly in the marginal parts of their distribution range, and found multiple redundant conservation units in other areas. The Mediterranean forests and to a lesser extent the boreal forests are underrepresented. Monitoring the conservation efficiency of each unit remains challenging; however, <2% of the conserved populations seem to be at risk of extinction. On the basis of our results, we recommend combining species-oriented and site-oriented strategies.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Variação Genética , Árvores/genética , Europa (Continente) , Especificidade da Espécie
2.
Microorganisms ; 10(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36363820

RESUMO

The aim of this study was to investigate fungal communities associated with leaves and roots of healthy-looking and declining U. glabra trees. The study was expected to demonstrate whether and how the diversity and composition of fungal communities change in these functional tissues following the infection by Dutch elm disease-causing fungi. The study sites included six U. glabra sites in Lithuania, where leaves and roots were sampled. DNA was isolated from individual samples, amplified using ITS2 rRNA as a marker, and subjected to high-throughput sequencing. The sequence analysis showed the presence of 32,699 high-quality reads, which following clustering, were found to represent 520 non-singleton fungal taxa. In leaves, the fungal species richness was significantly higher in healthy-looking trees than in diseased ones (p < 0.05). In roots, a similar comparison showed that the difference was insignificant (p > 0.05). The most common fungi in all samples of roots were Trichocladium griseum (32.9%), Penicillium restrictum (21.2%), and Unidentified sp. 5238_7 (12.6%). The most common fungi in all samples of leaves were Trichomerium sp. 5238_8 (12.30%), Aureobasidium pullulans (12.03%), Cladosporium sp. 5238_5 (11.73%), and Vishniacozyma carnescens (9.86%). The results showed that the detected richness of fungal taxa was higher in samples collected from healthy-looking trees than from diseased ones, thereby highlighting the negative impact of the Dutch elm disease on the overall fungal diversity.

3.
Microorganisms ; 10(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36296216

RESUMO

Fifty-nine fungal taxa, isolated from re-emerging Fraxinus excelsior sites in Lithuania, were in vitro tested against three strains of Hymenoscyphus fraxineus on agar media to establish their biocontrol properties. All tested fungi were isolated from leaves and shoots of relatively healthy Fraxinus excelsior trees (<30% defoliation), which were affected by ash dieback but their phytosanitary condition has not worsened during the last decade. The inhibition of H. fraxineus growth by tested fungal taxa ranged between 16−87%. Occasionally isolated fungal taxa such as Neonectria coccinea, Nothophorma quercina, and Phaeosphaeria caricis were among the most effective fungi inhibiting the growth of H. fraxineus cultures. Among the more commonly isolated fungal taxa, Cladosporium sp., Fusarium sp., Malassezia sp., and Aureobasidium pullulans showed a strong growth inhibition of H. fraxineus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA