RESUMO
Wearable Heart Rate monitors are used in sports to provide physiological insights into athletes' well-being and performance. Their unobtrusive nature and ability to provide reliable heart rate measurements facilitate the estimation of cardiorespiratory fitness of athletes, as quantified by maximum consumption of oxygen uptake. Previous studies have employed data-driven models which use heart rate information to estimate the cardiorespiratory fitness of athletes. This signifies the physiological relevance of heart rate and heart rate variability for the estimation of maximal oxygen uptake. In this work, the heart rate variability features that were extracted from both exercise and recovery segments were fed to three different Machine Learning models to estimate maximal oxygen uptake of 856 athletes performing Graded Exercise Testing. A total of 101 features from exercise and 30 features from recovery segments were given as input to three feature selection methods to avoid overfitting of the models and to obtain relevant features. This resulted in the increase of model's accuracy by 5.7% for exercise and 4.3% for recovery. Further, post-modelling analysis was performed to remove the deviant points in two cases, initially in both training and testing and then only in training set, using k-Nearest Neighbour. In the former case, the removal of deviant points led to a reduction of 19.3% and 18.0% in overall estimation error for exercise and recovery, respectively. In the latter case, which mimicked the real-world scenario, the average R value of the models was observed to be 0.72 and 0.70 for exercise and recovery, respectively. From the above experimental approach, the utility of heart rate variability to estimate maximal oxygen uptake of large population of athletes was validated. Additionally, the proposed work contributes to the utility of cardiorespiratory fitness assessment of athletes through wearable heart rate monitors.
Assuntos
Teste de Esforço , Consumo de Oxigênio , Humanos , Frequência Cardíaca/fisiologia , Consumo de Oxigênio/fisiologia , Teste de Esforço/métodos , Atletas , OxigênioRESUMO
Respiratory ailments afflict a wide range of people and manifests itself through conditions like asthma and sleep apnea. Continuous monitoring of chronic respiratory ailments is seldom used outside the intensive care ward due to the large size and cost of the monitoring system. While Electrocardiogram (ECG) based respiration extraction is a validated approach, its adoption is limited by access to a suitable continuous ECG monitor. Recently, due to the widespread adoption of wearable smartwatches with in-built Photoplethysmogram (PPG) sensor, it is being considered as a viable candidate for continuous and unobtrusive respiration monitoring. Research in this domain, however, has been predominantly focussed on estimating respiration rate from PPG. In this work, a novel end-to-end deep learning network called RespNet is proposed to perform the task of extracting the respiration signal from a given input PPG as opposed to extracting respiration rate. The proposed network was trained and tested on two different datasets utilizing different modalities of reference respiration signal recordings. Also, the similarity and performance of the proposed network against two conventional signal processing approaches for extracting respiration signal were studied. The proposed method was tested on two independent datasets with a Mean Squared Error of 0.262 and 0.145. The cross-correlation coefficient of the respective datasets were found to be 0.933 and 0.931. The reported errors and similarity was found to be better than conventional approaches. The proposed approach would aid clinicians to provide comprehensive evaluation of sleep-related respiratory conditions and chronic respiratory ailments while being comfortable and inexpensive for the patient.