Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 81(5): 1343-57, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21752110

RESUMO

Transmission of Plasmodium species from a mammalian host to the mosquito vector requires the uptake, during an infected blood meal, of gametocytes, the precursor cells of the gametes. Relatively little is known about the molecular mechanisms involved in the developmental switch from asexual development to sexual differentiation or the maturation and survival of gametocytes. Here, we show that a gene coding for a novel putative transporter, NPT1, plays a crucial role in the development of Plasmodium berghei gametocytes. Parasites lacking NPT1 are severely compromised in the production of gametocytes and the rare gametocytes produced are unable to differentiate into fertile gametes. This is the earliest block in gametocytogenesis obtained by reverse genetics and the first to demonstrate the role of a protein with a putative transport function in sexual development. These results and the high degree of conservation of NPT1 in Plasmodium species suggest that this protein could be an attractive target for the development of novel drugs to block the spread of malaria.


Assuntos
Gametogênese/fisiologia , Plasmodium berghei/metabolismo , Diferenciação Sexual/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Animais , Culicidae/parasitologia , Eritrócitos/parasitologia , Gametogênese/genética , Expressão Gênica , Interações Hospedeiro-Parasita , Malária/metabolismo , Malária/patologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Ratos , Ratos Wistar
2.
Cell Microbiol ; 11(9): 1329-39, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19438514

RESUMO

Most Apicomplexa are obligatory intracellular parasites that multiply inside a so-called parasitophorous vacuole (PV) formed upon parasite entry into the host cell. Plasmodium, the agent of malaria and the Apicomplexa most deadly to humans, multiplies in both hepatocytes and erythrocytes in the mammalian host. Although much has been learned on how Apicomplexa parasites invade host cells inside a PV, little is known of how they rupture the PV membrane and egress host cells. Here, we characterize a Plasmodium protein, called LISP1 (liver-specific protein 1), which is specifically involved in parasite egress from hepatocytes. LISP1 is expressed late during parasite development inside hepatocytes and locates at the PV membrane. Intracellular parasites deficient in LISP1 develop into hepatic merozoites, which display normal infectivity to erythrocytes. However, LISP1-deficient liver-stage parasites do not rupture the membrane of the PV and remain trapped inside hepatocytes. LISP1 is the first Plasmodium protein shown by gene targeting to be involved in the lysis of the PV membrane.


Assuntos
Fígado/parasitologia , Plasmodium berghei/fisiologia , Proteínas de Protozoários/fisiologia , Vacúolos/parasitologia , Animais , Deleção de Genes , Perfilação da Expressão Gênica , Marcação de Genes , Dados de Sequência Molecular , Plasmodium berghei/genética , Proteínas de Protozoários/genética
3.
Mol Cell Biol ; 26(9): 3541-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611995

RESUMO

Notch signaling is an evolutionarily conserved pathway involved in intercellular communication and is essential for proper cell fate choices. Numerous genes participate in the modulation of the Notch signaling pathway activity. Among them, Notchless (Nle) is a direct regulator of the Notch activity identified in Drosophila melanogaster. Here, we characterized the murine ortholog of Nle and demonstrated that it has conserved the ability to modulate Notch signaling. We also generated mice deficient for mouse Nle (mNle) and showed that its disruption resulted in embryonic lethality shortly after implantation. In late mNle(-/-) blastocysts, inner cell mass (ICM) cells died through a caspase 3-dependent apoptotic process. Most deficient embryos exhibited a delay in the temporal down-regulation of Oct4 expression in the trophectoderm (TE). However, mNle-deficient TE was able to induce decidual swelling in vivo and properly differentiated in vitro. Hence, our results indicate that mNle is mainly required in ICM cells, being instrumental for their survival, and raise the possibility that the death of mNle-deficient embryos might result from abnormal Notch signaling during the first steps of development.


Assuntos
Linhagem da Célula/genética , Implantação do Embrião/genética , Embrião de Mamíferos/citologia , Genes Letais , Proteínas de Membrana/fisiologia , Receptores Notch/fisiologia , Sequência de Aminoácidos , Animais , Apoptose , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Embrião não Mamífero/citologia , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Xenopus
4.
BMC Genomics ; 8: 466, 2007 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18093287

RESUMO

BACKGROUND: The invasion of Anopheles salivary glands by Plasmodium sporozoites is an essential step for transmission of the parasite to the vertebrate host. Salivary gland sporozoites undergo a developmental programme to express genes required for their journey from the site of the mosquito bite to the liver and subsequent invasion of, and development within, hepatocytes. A Serial Analysis of Gene Expression was performed on Anopheles gambiae salivary glands infected or not with Plasmodium berghei and we report here the analysis of the Plasmodium sporozoite transcriptome. RESULTS: Annotation of 530 tag sequences homologous to Plasmodium berghei genomic sequences identified 123 genes expressed in salivary gland sporozoites and these genes were classified according to their transcript abundance. A subset of these genes was further studied by quantitative PCR to determine their expression profiles. This revealed that sporozoites modulate their RNA amounts not only between the midgut and salivary glands, but also during their storage within the latter. Among the 123 genes, the expression of 66 is described for the first time in sporozoites of rodent Plasmodium species. CONCLUSION: These novel sporozoite expressed genes, especially those expressed at high levels in salivary gland sporozoites, are likely to play a role in Plasmodium infectivity in the mammalian host.


Assuntos
Anopheles/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Plasmodium berghei/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/parasitologia , Animais , Etiquetas de Sequências Expressas , Expressão Gênica , Genômica/métodos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Ratos
5.
Mol Biol Cell ; 15(10): 4444-56, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15229288

RESUMO

Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate-binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane.


Assuntos
Endocitose/fisiologia , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Sequência de Bases , Endossomos/ultraestrutura , Células HeLa , Humanos , Membranas Intracelulares/ultraestrutura , Camundongos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Transferrina/metabolismo , Ubiquitina-Proteína Ligases , Dedos de Zinco
6.
Gene ; 296(1-2): 75-86, 2002 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12383505

RESUMO

The DDK syndrome is defined as the embryonic lethality of F1 mouse embryos from crosses between DDK females and males from other strains (named hereafter as non-DDK strains). Genetically controlled by the Ovum mutant (Om) locus, it is due to a deleterious interaction between a maternal factor present in DDK oocytes and the non-DDK paternal pronucleus. Therefore, the DDK syndrome constitutes a unique genetic tool to study the crucial interactions that take place between the parental genomes and the egg cytoplasm during mammalian development. In this paper, we present an extensive analysis performed by exon trapping on the Om region. Twenty-seven trapped sequences were from genes in the databases: beta-adaptin, CCT zeta2, DNA LigaseIII, Notchless, Rad51l3 and Scya1. Twenty-eight other sequences presented similarities with expressed sequence tags and genomic sequences whereas 57 did not. The pattern of expression of 37 of these markers was established. Importantly, five of them are expressed in DDK oocytes and are candidate genes for the maternal factor, and 20 are candidate genes for the paternal factor since they are expressed in testis. This data is an important step towards identifying the genes responsible for the DDK syndrome.


Assuntos
Infertilidade Feminina/genética , Mapeamento Físico do Cromossomo/métodos , Animais , Células COS , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Embrião de Mamíferos/metabolismo , Éxons/genética , Etiquetas de Sequências Expressas , Feminino , Expressão Gênica , Predisposição Genética para Doença/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , RNA/genética , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome , Transcrição Gênica
7.
EMBO Mol Med ; 6(11): 1387-97, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25257508

RESUMO

The malaria parasite, Plasmodium, requires iron for growth, but how it imports iron remains unknown. We characterize here a protein that belongs to the ZIP (Zrt-, Irt-like Protein) family of metal ion transport proteins and have named ZIP domain-containing protein (ZIPCO). Inactivation of the ZIPCO-encoding gene in Plasmodium berghei, while not affecting the parasite's ability to multiply in mouse blood and to infect mosquitoes, greatly impairs its capacity to develop inside hepatocytes. Iron/zinc supplementation and depletion experiments suggest that ZIPCO is required for parasite utilization of iron and possibly zinc, consistent with its predicted function as a metal transporter. This is the first report of a ZIP protein having a crucial role in Plasmodium liver-stage development, as well as the first metal ion transporter identified in Plasmodium pre-erythrocytic stages. Because of the drastic dependence on iron of Plasmodium growth, ZIPCO and related proteins might constitute attractive drug targets to fight against malaria.


Assuntos
Ferro/metabolismo , Fígado/parasitologia , Malária/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Sequência de Aminoácidos , Animais , Anopheles , Feminino , Técnicas de Inativação de Genes , Células Hep G2 , Hepatócitos/parasitologia , Humanos , Íons/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Filogenia , Plasmodium berghei/genética , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
8.
Cell Host Microbe ; 10(6): 591-602, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22177563

RESUMO

During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite. Further, in the Toxoplasma gondii tachyzoite, AMA1 is dispensable for normal RON4 ring and functional TJ assembly but enhances tachyzoite apposition to the cell and internalization frequency. We propose that while the RON proteins act at the TJ, AMA1 mainly functions on the zoite surface to permit correct attachment to the cell, which may facilitate invasion depending on the zoite-cell combination.


Assuntos
Antígenos de Protozoários/metabolismo , Malária/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Animais , Anopheles , Antígenos de Protozoários/genética , Linhagem Celular , Eritrócitos/parasitologia , Hepatócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Esporozoítos/metabolismo , Toxoplasma/genética
9.
J Exp Med ; 206(4): 953-66, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19349466

RESUMO

Plasmodium and Toxoplasma are parasites of major medical importance that belong to the Apicomplexa phylum of protozoa. These parasites transform into various stages during their life cycle and express a specific set of proteins at each stage. Although little is yet known of how gene expression is controlled in Apicomplexa, histone modifications, particularly acetylation, are emerging as key regulators of parasite differentiation and stage conversion. We investigated the anti-Apicomplexa effect of FR235222, a histone deacetylase inhibitor (HDACi). We show that FR235222 is active against a variety of Apicomplexa genera, including Plasmodium and Toxoplasma, and is more potent than other HDACi's such as trichostatin A and the clinically relevant compound pyrimethamine. We identify T. gondii HDAC3 (TgHDAC3) as the target of FR235222 in Toxoplasma tachyzoites and demonstrate the crucial role of the conserved and Apicomplexa HDAC-specific residue TgHDAC3 T99 in the inhibitory activity of the drug. We also show that FR235222 induces differentiation of the tachyzoite (replicative) into the bradyzoite (nonreplicative) stage. Additionally, via its anti-TgHDAC3 activity, FR235222 influences the expression of approximately 370 genes, a third of which are stage-specifically expressed. These results identify FR235222 as a potent HDACi of Apicomplexa, and establish HDAC3 as a central regulator of gene expression and stage conversion in Toxoplasma and, likely, other Apicomplexa.


Assuntos
Apicomplexa/genética , Histona Desacetilases/genética , Animais , Apicomplexa/citologia , Apicomplexa/enzimologia , Diferenciação Celular , Sequência Conservada , Regulação da Expressão Gênica , Inibidores de Histona Desacetilases , Histona Desacetilases/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Plasmodium/enzimologia , Plasmodium/genética , Toxoplasma/enzimologia , Toxoplasma/genética
10.
Nat Protoc ; 2(7): 1705-12, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17641635

RESUMO

The initial phase of malaria infection is the pre-erythrocytic phase, which begins when parasites are injected by the mosquito into the dermis and ends when parasites are released from hepatocytes into the blood. We present here a protocol for the in vivo imaging of GFP-expressing sporozoites in the dermis of rodents, using the combination of a high-speed spinning-disk confocal microscope and a high-speed charge-coupled device (CCD) camera permitting rapid in vivo acquisitions. The steps of this protocol indicate how to infect mice through the bite of infected Anopheles stephensi mosquitoes, record the sporozoites' fate in the mouse ear and to present the data as maximum-fluorescence-intensity projections, time-lapse representations and movie clips. This protocol permits investigating the various aspects of sporozoite behavior in a quantitative manner, such as motility in the matrix, cell traversal, crossing the endothelial barrier of both blood and lymphatic vessels and intravascular gliding. Applied to genetically modified parasites and/or mice, these imaging techniques should be useful for studying the cellular and molecular bases of Plasmodium sporozoite infection in vivo.


Assuntos
Derme/parasitologia , Malária/parasitologia , Plasmodium/citologia , Animais , Anopheles , Marcadores Genéticos , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Interações Hospedeiro-Parasita , Mordeduras e Picadas de Insetos , Malária/transmissão , Mamíferos , Camundongos , Microscopia Confocal/métodos , Plasmodium/isolamento & purificação , Glândulas Salivares/citologia
11.
Nat Protoc ; 2(7): 1811-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17641649

RESUMO

The form of the malaria parasite inoculated by the mosquito, called the sporozoite, transforms inside the host liver into thousands of a new form of the parasite, called the merozoite, which infects erythrocytes. We present here a protocol to visualize in vivo the behavior of Plasmodium berghei parasites in the hepatic tissue of the murine host. The use of GFP-expressing parasites and a high-speed spinning disk confocal microscope allows for the acquisition of four-dimensional images, which provide a time lapse view of parasite displacement and development in tissue volumes. These data can be analyzed to give information on the early events of sporozoite penetration of the hepatic tissue, that is, sporozoite gliding in the liver sinusoids, crossing the sinusoidal barrier, gliding in the parenchyma and traversal of hepatocytes, and invasion of a final hepatocyte, as well as the terminal events of merosome and merozoite release from infected hepatocytes. Combined with the use of mice expressing fluorescent cell types or cell markers, the system will provide useful information not only on the primary infection process, but also on parasite interactions with the host immune cells in the liver.


Assuntos
Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei/isolamento & purificação , Animais , Anopheles/parasitologia , Marcadores Genéticos , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Hepatócitos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Plasmodium berghei/citologia , Plasmodium berghei/patogenicidade , Glândulas Salivares/citologia , Glândulas Salivares/parasitologia
12.
Mol Microbiol ; 54(2): 298-306, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15469504

RESUMO

Malaria infection is initiated when Plasmodium sporozoites are injected into a host during the bite of an infected mosquito. In the mammal, the sporozoite must rapidly reach an intravacuolar niche within a hepatocyte, where it will generate the parasite stage that invades red blood cells and causes the symptoms of the disease. Herein, we describe our understanding of the way in which sporozoites travel from the site of the mosquito bite to the liver, arrest in the liver, cross the sinusoidal barrier and eventually gain access to hepatocytes. We also highlight some of the recent advances in our understanding of these processes at the molecular level.


Assuntos
Hepatócitos/parasitologia , Malária/parasitologia , Esporozoítos/metabolismo , Animais , Transporte Biológico , Culicidae/parasitologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Interações Hospedeiro-Parasita , Humanos , Fígado/citologia , Fígado/parasitologia , Plasmodium/citologia , Plasmodium/fisiologia , Esporozoítos/citologia , Vacúolos/metabolismo
13.
Cell Microbiol ; 6(7): 687-94, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15186404

RESUMO

Malaria is contracted when Plasmodium sporozoites are inoculated into the vertebrate host during the blood meal of a mosquito. In infected mosquitoes, sporozoites are present in large numbers in the secretory cavities of the salivary glands at the most distal site of the salivary system. However, how sporozoites move through the salivary system of the mosquito, both in resting and feeding mosquitoes, is unknown. Here, we observed fluorescent Plasmodium berghei sporozoites within live Anopheles stephensi mosquitoes and their salivary glands and ducts. We show that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells. Unlike in vitro, sporozoite gliding inside salivary cavities and ducts is modulated in speed and motion pattern. Imaging of sporozoite discharge through the proboscis of salivating mosquitoes indicates that sporozoites need to locomote from cavities into ducts to be ejected and that their progression inside ducts favours their early ejection. These observations suggest that sporozoite gliding allows not only for cell invasion but also for parasite locomotion in host tissues, and that it may control parasite transmission.


Assuntos
Anopheles/parasitologia , Processamento de Imagem Assistida por Computador/métodos , Malária/transmissão , Plasmodium berghei/fisiologia , Glândulas Salivares/parasitologia , Animais , Anopheles/fisiologia , Comportamento Alimentar , Proteínas de Fluorescência Verde , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Proteínas Luminescentes/metabolismo , Malária/parasitologia , Camundongos , Microscopia/instrumentação , Microscopia/métodos , Movimento , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA