Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Memb Sci ; 6732023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075431

RESUMO

A comprehensive mathematical model is presented that accurately estimates and predicts failure modes through the computations of heat rejection, temperature drop and lumen side pressure drop of the hollow fiber (HF) membrane-based NASA Spacesuit Water Membrane Evaporator (SWME). The model is based on mass and energy balances in terms of the physical properties of water and membrane transport properties. The mass flux of water vapor through the pores is calculated based on Knudsen diffusion with a membrane structure parameter that accounts for effective mean pore diameter, porosity, thickness, and tortuosity. Lumen-side convective heat transfer coefficients are calculated from laminar flow boundary layer theory using the Nusselt correlation. Lumen side pressure drop is estimated using the Hagen-Poiseuille equation. The coupled ordinary differential equations for mass flow rate, water temperature and lumen side pressure are solved simultaneously with the equations for mass flux and convective heat transfer to determine overall heat rejection, water temperature and lumen side pressure drop. A sensitivity analysis is performed to quantify the effect of input variability on SWME response and identify critical failure modes. The analysis includes the potential effect of organic and/or inorganic contaminants and foulants, partial pore entry due to hydrophilization, and other unexpected operational failures such as bursting or fiber damage. The model can be applied to other hollow fiber membrane-based applications such as low temperature separation and concentration of valuable biomolecules from solution.

2.
Nucleic Acids Res ; 45(9): 5523-5538, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28334800

RESUMO

Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA-RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this work, we develop a biophysical model to describe asRNA-RNA hybridization that incorporates in vivo factors using large-scale experimental hybridization data for three model RNAs: a group I intron, CsrB and a tRNA. A unique element of our model is the estimation of the availability of the target region to interact with a given asRNA using a differential entropic consideration of suboptimal structures. We showcase the utility of this model by evaluating its prediction capabilities in four additional RNAs: a group II intron, Spinach II, 2-MS2 binding domain and glgC 5΄ UTR. Additionally, we demonstrate the applicability of this approach to other bacterial species by predicting sRNA-mRNA binding regions in two newly discovered, though uncharacterized, regulatory RNAs.


Assuntos
Fenômenos Biofísicos , Biologia Computacional/métodos , Modelos Biológicos , Hibridização de Ácido Nucleico , RNA Antissenso/química , RNA Bacteriano/química , Sequência de Bases , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , Análise de Regressão , Termodinâmica
3.
Crit Rev Biochem Mol Biol ; 49(1): 69-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24261569

RESUMO

The study of post-transcriptional RNA modifications has long been focused on the roles these chemical modifications play in maintaining ribosomal function. The field of ribosomal RNA modification has reached a milestone in recent years with the confirmation of the final unknown ribosomal RNA methyltransferase in Escherichia coli in 2012. Furthermore, the last 10 years have brought numerous discoveries in non-coding RNAs and the roles that post-transcriptional modification play in their functions. These observations indicate the need for a revitalization of this field of research to understand the role modifications play in maintaining cellular health in a dynamic environment. With the advent of high-throughput sequencing technologies, the time is ripe for leaps and bounds forward. This review discusses ribosomal RNA methyltransferases and their role in responding to external stress in Escherichia coli, with a specific focus on knockout studies and on analysis of transcriptome data with respect to rRNA methyltransferases.


Assuntos
Escherichia coli/citologia , Escherichia coli/enzimologia , Metiltransferases/metabolismo , RNA Bacteriano/metabolismo , RNA Ribossômico/metabolismo , Temperatura Baixa , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Metilação , Metiltransferases/genética , Estresse Oxidativo , RNA Bacteriano/genética , RNA Ribossômico/genética
4.
Inhal Toxicol ; 27(1): 74-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25600141

RESUMO

RNAs are more susceptible to modifications than DNA, and chemical modifications in RNA have an effect on their structure and function. This study aimed to characterize chemical effects on total RNA in human A549 lung cells after exposure to elevated levels of major secondary air pollutants commonly found in urban locations, including ozone (O3), acrolein (ACR) and methacrolein (MACR). Enzyme-linked immunosorbent assays (ELISA) were used to measure levels of interleukin (IL)-8 in the growth media and 8-oxoguanine (8OG) levels in total cellular RNA, and lactate dehydrogenase (LDH) in the growth media was measured by a coupled enzymatic assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure levels of microRNA 10b (miR-10b). The study found that 1-h exposure to all tested pollutant mixtures consistently caused significant increases in the levels of 8OG in total RNA. In the case of 4 ppm O3 exposures, measured levels of IL-8, LDH and miR-10b each showed consistent trends between two independent trials, but varied among these three targets. After 1-h exposures to an ACR+MACR mixture, measured levels of IL-8, LDH and miR-10b showed variable results. For mixtures of O3+ACR+MACR, IL-8 measurements showed no change; miR-10b and LDH showed variable results. The results indicate that short-term high-concentration exposures to air pollution can cause RNA chemical modifications. Chemical modifications in RNAs could represent more consistent markers of cellular stress relative to other inflammation markers, such as IL-8 and LDH, and provide a new biomarker endpoint for mechanistic studies in toxicity of air pollution exposure.


Assuntos
Acroleína/análogos & derivados , Poluentes Atmosféricos/toxicidade , Guanina/análogos & derivados , Ozônio/toxicidade , RNA/metabolismo , Acroleína/toxicidade , Poluição do Ar/efeitos adversos , Linhagem Celular Tumoral , Guanina/metabolismo , Humanos , Interleucina-8/metabolismo , L-Lactato Desidrogenase/metabolismo
5.
Sep Sci Technol ; 58(6): 1202-1236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063489

RESUMO

In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.

6.
ACS ES T Eng ; 2(2): 251-262, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406036

RESUMO

Reduction of airborne viral particles in enclosed spaces is critical in controlling pandemics. Three different hollow fiber membrane (HFM) modules were investigated for viral aerosol separation in enclosed spaces. Pore structures were characterized by scanning electron microscopy, and air transport properties were measured. Particle removal efficiency was characterized using aerosols generated by a collision atomizer from a defined mixture of synthetic nanoparticles including SARS-CoV-2 mimics (protein-coated 100 nm polystyrene). HFM1 (polyvinylidene fluoride, ~50-1300 nm pores) demonstrated 96.5-100% efficiency for aerosols in the size range of 0.3-3 µm at a flow rate of 18.6 ± 0.3 SLPM (~1650 LMH), whereas HFM2 (polypropylene, ~40 nm pores) and HFM3 (hydrophilized polyether sulfone, ~140-750 nm pores) demonstrated 99.65-100% and 98.8-100% efficiency at flow rates of 19.7 ± 0.3 SLPM (~820 LMH) and 19.4 ± 0.2 SLPM (~4455 LMH), respectively. Additionally, lasting filtration with minimal fouling was demonstrated using ambient aerosols over 2 days. Finally, each module was evaluated with pseudovirus (vesicular stomatitis virus) aerosol, demonstrating 99.3% (HFM1), >99.8% (HFM2), and >99.8% (HFM3) reduction in active pseudovirus titer as a direct measure of viral particle removal. These results quantified the aerosol separation efficiency of HFMs and highlight the need for further development of this technology to aid the fight against airborne viruses and particulate matter concerning human health.

7.
ACS Appl Bio Mater ; 5(11): 5140-5147, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314574

RESUMO

Severe acute respiratory syndrome coronavirus 2's (SARS-CoV-2) rapid global spread has posed a significant threat to human health, and similar outbreaks could occur in the future. Developing effective virus inactivation technologies is critical to preventing and overcoming pandemics. The infection of SARS-CoV-2 depends on the binding of the spike glycoprotein (S) receptor binding domain (RBD) to the host cellular surface receptor angiotensin-converting enzyme 2 (ACE2). If this interaction is disrupted, SARS-CoV-2 infection could be inhibited. Magnetic nanoparticle (MNP) dispersions exposed to an alternating magnetic field (AMF) possess the unique ability for magnetically mediated energy delivery (MagMED); this localized energy delivery and associated mechanical, chemical, and thermal effects are a possible technique for inactivating viruses. This study investigates the MNPs' effect on vesicular stomatitis virus pseudoparticles containing the SARS-CoV-2 S protein when exposed to AMF or a water bath (WB) with varying target steady-state temperatures (45, 50, and 55 °C) for different exposure times (5, 15, and 30 min). In comparison to WB exposures at the same temperatures, AMF exposures resulted in significantly greater inactivation in multiple cases. This is likely due to AMF-induced localized heating and rotation of MNPs. In brief, our findings demonstrate a potential strategy for combating the SARS-CoV-2 pandemic or future ones.


Assuntos
COVID-19 , Nanopartículas de Magnetita , Humanos , SARS-CoV-2 , Nanopartículas de Magnetita/uso terapêutico , Peptidil Dipeptidase A/química , Campos Magnéticos
8.
Commun Mater ; 3(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406238

RESUMO

The airborne nature of coronavirus transmission makes it critical to develop new barrier technologies that can simultaneously reduce aerosol and viral spread. Here, we report nanostructured membranes with tunable thickness and porosity for filtering coronavirus-sized aerosols, combined with antiviral enzyme functionalization that can denature spike glycoproteins of the SARS-CoV-2 virus in low-hydration environments. Thin, asymmetric membranes with subtilisin enzyme and methacrylic functionalization show more than 98.90% filtration efficiency for 100-nm unfunctionalized and protein-functionalized polystyrene latex aerosol particles. Unfunctionalized membranes provided a protection factor of 540 ± 380 for coronavirus-sized particle, above the Occupational Safety and Health Administration's standard of 10 for N95 masks. SARS-CoV-2 spike glycoprotein on the surface of coronavirus-sized particles was denatured in 30 s by subtilisin enzyme-functionalized membranes with 0.02-0.2% water content on the membrane surface.

9.
Commun Biol ; 3(1): 392, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699268

RESUMO

The impact of environmentally-induced chemical changes in RNA has been fairly unexplored. Air pollution induces oxidative modifications such as 8-oxo-7,8-dihydroguanine (8-oxoG) in RNAs of lung cells, which could be associated with premature lung dysfunction. We develop a method for 8-oxoG profiling using immunocapturing and RNA sequencing. We find 42 oxidized transcripts in bronchial epithelial BEAS-2B cells exposed to two air pollution mixtures that recreate urban atmospheres. We show that the FDFT1 transcript in the cholesterol biosynthesis pathway is susceptible to air pollution-induced oxidation. This process leads to decreased transcript and protein expression of FDFT1, and reduced cholesterol synthesis in cells exposed to air pollution. Knockdown of FDFT1 replicates alterations seen in air pollution exposure such as transformed cell size and suppressed cytoskeleton organization. Our results argue of a possible novel biomarker and of an unseen mechanism by which air pollution selectively modifies key metabolic-related transcripts facilitating cell phenotypes in bronchial dysfunction.


Assuntos
Poluentes Atmosféricos/farmacologia , Colesterol/genética , Processamento Pós-Transcricional do RNA/genética , Transcriptoma/genética , Poluição do Ar/efeitos adversos , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Colesterol/biossíntese , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Guanina/análogos & derivados , Guanina/química , Ensaios de Triagem em Larga Escala , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pneumopatias/induzido quimicamente , Oxirredução/efeitos dos fármacos , Material Particulado/efeitos adversos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
ACS Synth Biol ; 7(5): 1315-1327, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29694026

RESUMO

Heterologous tRNA:aminoacyl tRNA synthetase pairs are often employed for noncanonical amino acid incorporation in the quest for an expanded genetic code. In this work, we investigated one possible mechanism by which directed evolution can improve orthogonal behavior for a suite of Methanocaldococcus jannaschii ( Mj) tRNATyr-derived amber suppressor tRNAs. Northern blotting demonstrated that reduced expression of heterologous tRNA variants correlated with improved orthogonality. We suspected that reduced expression likely minimized nonorthogonal interactions with host cell machinery. Despite the known abundance of post-transcriptional modifications in tRNAs across all domains of life, few studies have investigated how host enzymes may affect behavior of heterologous tRNAs. Therefore, we measured tRNA orthogonality using a fluorescent reporter assay in several modification-deficient strains, demonstrating that heterologous tRNAs with high expression are strongly affected by some native E. coli RNA-modifying enzymes, whereas low abundance evolved heterologous tRNAs are less affected by these same enzymes. We employed mass spectrometry to map ms2i6A37 and Ψ39 in the anticodon arm of two high abundance tRNAs (Nap1 and tRNAOptCUA), which provides (to our knowledge) the first direct evidence that MiaA and TruA post-transcriptionally modify evolved heterologous amber suppressor tRNAs. Changes in total tRNA modification profiles were observed by mass spectrometry in cells hosting these and other evolved suppressor tRNAs, suggesting that the demonstrated interactions with host enzymes might disturb native tRNA modification networks. Together, these results suggest that heterologous tRNAs engineered for specialized amber suppression can evolve highly efficient suppression capacity within the native post-transcriptional modification landscape of host RNA processing machinery.


Assuntos
Evolução Molecular Direcionada/métodos , Escherichia coli/genética , Methanocaldococcus/genética , RNA de Transferência/metabolismo , Escherichia coli/metabolismo , Genes Supressores , Espectrometria de Massas , Mutação , Pseudouridina/genética , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , RNA de Transferência de Tirosina , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA