Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Genomics ; 116(2): 110793, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38220132

RESUMO

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity and function. However the choice of sample multiplexing reagents can impact data quality and experimental outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse embryonic brain and patient-derived xenografts (PDXs). We found that all multiplexing reagents worked well in cell types robust to ex vivo manipulation but suffered from signal-to-noise issues in more delicate sample types. We compared multiple demultiplexing algorithms which differed in performance depending on data quality. We find that minor improvements to laboratory workflows such as titration and rapid processing are critical to optimal performance. We also compared the performance of fixed scRNA-Seq kits and highlight the advantages of the Parse Biosciences kit for fragile samples. Highly multiplexed scRNA-Seq experiments require more sequencing resources, therefore we evaluated CRISPR-based destruction of non-informative genes to enhance sequencing value. Our comprehensive analysis provides insights into the selection of appropriate sample multiplexing reagents and protocols for scRNA-Seq experiments, facilitating more accurate and cost-effective studies.


Assuntos
Leucócitos Mononucleares , Análise de Célula Única , Humanos , Animais , Camundongos , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Perfilação da Expressão Gênica/métodos
2.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34550360

RESUMO

Blood vessel growth and remodelling are essential during embryonic development and disease pathogenesis. The diversity of endothelial cells (ECs) is transcriptionally evident and ECs undergo dynamic changes in gene expression during vessel growth and remodelling. Here, we investigated the role of the histone acetyltransferase HBO1 (KAT7), which is important for activating genes during development and for histone H3 lysine 14 acetylation (H3K14ac). Loss of HBO1 and H3K14ac impaired developmental sprouting angiogenesis and reduced pathological EC overgrowth in the retinal endothelium. Single-cell RNA sequencing of retinal ECs revealed an increased abundance of tip cells in Hbo1-deficient retinas, which led to EC overcrowding in the retinal sprouting front and prevented efficient tip cell migration. We found that H3K14ac was highly abundant in the endothelial genome in both intra- and intergenic regions, suggesting that HBO1 acts as a genome organiser that promotes efficient tip cell behaviour necessary for sprouting angiogenesis. This article has an associated 'The people behind the papers' interview.


Assuntos
Histona Acetiltransferases/metabolismo , Neovascularização Patológica/metabolismo , Acetilação , Animais , Movimento Celular/fisiologia , Células Cultivadas , Desenvolvimento Embrionário/fisiologia , Células Endoteliais/metabolismo , Feminino , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
3.
Immunity ; 37(6): 1009-23, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23219391

RESUMO

Cytopenias are key prognostic indicators of life-threatening infection, contributing to immunosuppression and mortality. Here we define a role for Caspase-1-dependent death, known as pyroptosis, in infection-induced cytopenias by studying inflammasome activation in hematopoietic progenitor cells. The NLRP1a inflammasome is expressed in hematopoietic progenitor cells and its activation triggers their pyroptotic death. Active NLRP1a induced a lethal systemic inflammatory disease that was driven by Caspase-1 and IL-1ß but was independent of apoptosis-associated speck-like protein containing a CARD (ASC) and ameliorated by IL-18. Surprisingly, in the absence of IL-1ß-driven inflammation, active NLRP1a triggered pyroptosis of hematopoietic progenitor cells resulting in leukopenia at steady state. During periods of hematopoietic stress induced by chemotherapy or lymphocytic choriomeningitis virus (LCMV) infection, active NLRP1a caused prolonged cytopenia, bone marrow hypoplasia, and immunosuppression. Conversely, NLRP1-deficient mice showed enhanced recovery from chemotherapy and LCMV infection, demonstrating that NLRP1 acts as a cellular sentinel to alert Caspase-1 to hematopoietic and infectious stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Células-Tronco Hematopoéticas/metabolismo , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Dermatite/imunologia , Dermatite/metabolismo , Fluoruracila/farmacologia , Hematopoese/efeitos dos fármacos , Hematopoese/imunologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/virologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Mutação , Pancitopenia/imunologia , Pancitopenia/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
4.
Nucleic Acids Res ; 47(D1): D780-D785, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30395284

RESUMO

During haematopoiesis, haematopoietic stem cells differentiate into restricted potential progenitors before maturing into the many lineages required for oxygen transport, wound healing and immune response. We have updated Haemopedia, a database of gene-expression profiles from a broad spectrum of haematopoietic cells, to include RNA-seq gene-expression data from both mice and humans. The Haemopedia RNA-seq data set covers a wide range of lineages and progenitors, with 57 mouse blood cell types (flow sorted populations from healthy mice) and 12 human blood cell types. This data set has been made accessible for exploration and analysis, to researchers and clinicians with limited bioinformatics experience, on our online portal Haemosphere: https://www.haemosphere.org. Haemosphere also includes nine other publicly available high-quality data sets relevant to haematopoiesis. We have added the ability to compare gene expression across data sets and species by curating data sets with shared lineage designations or to view expression gene vs gene, with all plots available for download by the user.


Assuntos
Bases de Dados Genéticas , Expressão Gênica/genética , Hematopoese/genética , Transcriptoma/genética , Animais , Biologia Computacional , Células-Tronco Hematopoéticas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Humanos , Camundongos , RNA-Seq , Software
6.
Immunol Cell Biol ; 96(10): 1083-1094, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29870118

RESUMO

Plasmacytoid dendritic cells (pDCs) play a critical role in bridging the innate and adaptive immune systems. pDCs are specialized type I interferon (IFN) producers, which has implicated them as initiators of autoimmune pathogenesis. However, little is known about the downstream effectors of type I IFN signaling that amplify autoimmune responses. Here, we have used a chemokine reporter mouse to determine the CXCR3 ligand responses in DCs subsets. Following TLR7 stimulation, conventional type 1 and type 2 DCs (cDC1 and cDC2, respectively) uniformly upregulate CXCL10. By contrast, the proportion of chemokine positive pDCs was significantly less, and stable CXCL10+ and CXCL10- populations could be distinguished. CXCL9 expression was induced in all cDC1s, in half of the cDC2 but not by pDCs. The requirement for IFNAR signaling for chemokine reporter expression was interrogated by receptor blocking and deficiency and shown to be critical for CXCR3 ligand expression in Flt3-ligand-derived DCs. Chemokine-producing potential was not concordant with the previously identified markers of pDC heterogeneity. Finally, we show that CXCL10+ and CXCL10- populations are transcriptionally distinct, expressing unique transcriptional regulators, IFN signaling molecules, chemokines, cytokines, and cell surface markers. This work highlights CXCL10 as a downstream effector of type I IFN signaling and suggests a division of labor in pDCs subtypes that likely impacts their function as effectors of viral responses and as drivers of inflammation.


Assuntos
Quimiocina CXCL10/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Receptor 7 Toll-Like/agonistas , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Células Cultivadas , Quimiocina CXCL10/metabolismo , Citocinas/metabolismo , Perfilação da Expressão Gênica , Imunofenotipagem , Interferon Tipo I/metabolismo , Camundongos , Receptores CXCR3/metabolismo , Transdução de Sinais
7.
PLoS Genet ; 11(5): e1005211, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25973911

RESUMO

Down syndrome (DS), with trisomy of chromosome 21 (HSA21), is the commonest human aneuploidy. Pre-leukemic myeloproliferative changes in DS foetal livers precede the acquisition of GATA1 mutations, transient myeloproliferative disorder (DS-TMD) and acute megakaryocytic leukemia (DS-AMKL). Trisomy of the Erg gene is required for myeloproliferation in the Ts(1716)65Dn DS mouse model. We demonstrate here that genetic changes specifically attributable to trisomy of Erg lead to lineage priming of primitive and early multipotential progenitor cells in Ts(1716)65Dn mice, excess megakaryocyte-erythroid progenitors, and malignant myeloproliferation. Gene expression changes dependent on trisomy of Erg in Ts(1716)65Dn multilineage progenitor cells were correlated with those associated with trisomy of HSA21 in human DS hematopoietic stem and primitive progenitor cells. These data suggest a role for ERG as a regulator of hematopoietic lineage potential, and that trisomy of ERG in the context of DS foetal liver hemopoiesis drives the pre-leukemic changes that predispose to subsequent DS-TMD and DS-AMKL.


Assuntos
Cromossomos Humanos Par 21/genética , Síndrome de Down/genética , Proteínas Oncogênicas/genética , Células-Tronco/citologia , Transativadores/genética , Fatores de Transcrição/genética , Trissomia , ADP-Ribosil Ciclase 1/metabolismo , Alelos , Animais , Antígenos CD34/metabolismo , Linhagem da Célula , Proliferação de Células , Modelos Animais de Doenças , Células Eritroides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genótipo , Hematopoese/genética , Sistema Hematopoético/citologia , Sistema Hematopoético/metabolismo , Humanos , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , Análise em Microsséries , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Análise de Sequência de RNA , Células-Tronco/metabolismo , Regulador Transcricional ERG , Transcriptoma
8.
Proc Natl Acad Sci U S A ; 111(16): 5884-9, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711413

RESUMO

Thrombopoietin (TPO) acting via its receptor, the cellular homologue of the myeloproliferative leukemia virus oncogene (Mpl), is the major cytokine regulator of platelet number. To precisely define the role of specific hematopoietic cells in TPO-dependent hematopoiesis, we generated mice that express the Mpl receptor normally on stem/progenitor cells but lack expression on megakaryocytes and platelets (Mpl(PF4cre/PF4cre)). Mpl(PF4cre/PF4cre) mice displayed profound megakaryocytosis and thrombocytosis with a remarkable expansion of megakaryocyte-committed and multipotential progenitor cells, the latter displaying biological responses and a gene expression signature indicative of chronic TPO overstimulation as the underlying causative mechanism, despite a normal circulating TPO level. Thus, TPO signaling in megakaryocytes is dispensable for platelet production; its key role in control of platelet number is via generation and stimulation of the bipotential megakaryocyte precursors. Nevertheless, Mpl expression on megakaryocytes and platelets is essential to prevent megakaryocytosis and myeloproliferation by restricting the amount of TPO available to stimulate the production of megakaryocytes from the progenitor cell pool.


Assuntos
Plaquetas/metabolismo , Megacariócitos/metabolismo , Células Mieloides/citologia , Receptores de Trombopoetina/metabolismo , Trombopoese , Animais , Antígenos CD34/metabolismo , Plaquetas/citologia , Compartimento Celular , Proliferação de Células , Células Clonais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcação de Genes , Loci Gênicos/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Integrases/metabolismo , Megacariócitos/citologia , Camundongos , Modelos Biológicos , Células Mieloides/metabolismo , Trombocitose , Trombopoetina/genética , Trombopoetina/metabolismo , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 110(22): 9031-5, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671076

RESUMO

Previous studies have shown that mouse bone marrow cells can produce mast cells when stimulated in vitro by stem cell factor (SCF) and interleukin-3 (IL-3). Experiments to define the marrow cells able to generate mast cells showed that the most active subpopulations were the Kit(+) Sca1(-) progenitor cell fraction and the more ancestral Kit(+) Sca1(+) blast colony-forming cell fraction. In clonal cultures, up to 64% of blast colony-forming cells were able to generate mast cells when stimulated by SCF and IL-3, and, of these, the most active were those in the CD34(-) Flt3R(-) long-term repopulating cell fraction. Basophils, identified by the monoclonal antibody mMCP-8 to mouse mast cell serine protease-8, were also produced by 50% of blast colony-forming cells with a strong concordance in the production of both cell types by individual blast colony-forming cells. Enriched populations of marrow-derived basophils were shown to generate variable numbers of mast cells after a further incubation with SCF and IL-3. The data extend the repertoire of lineage-committed cells able to be produced by multipotential hematopoietic blast colony-forming cells and show that basophils and mast cells can have common ancestral cells and that basophils can probably generate mast cells at least under defined in vitro conditions.


Assuntos
Basófilos/citologia , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Mastócitos/citologia , Animais , Anticorpos Monoclonais , Corantes Azur , Citometria de Fluxo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Fator de Células-Tronco
10.
Glob Chang Biol ; 21(12): 4520-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26183112

RESUMO

Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003. We specifically monitored the responses of eight species, representing four growth forms: (i) graminoids (Carex bigellowii and Eriophorum vaginatum); (ii) evergreen shrubs (Ledum palustre, Cassiope tetragona, and Vaccinium vitis-idaea); (iii) deciduous shrubs (Betula nana and Salix pulchra); and (iv) forbs (Polygonum bistorta). Our study answered three questions: (i) Do experimental treatments affect the timing of leaf bud break, flowering, and leaf senescence? (ii) Are responses to treatments species-specific and growth form-specific? and (iii) Which environmental factors best predict timing of phenophases? Treatment significantly affected the timing of all three phenophases, although the two experimental treatments did not differ from each other. While phenological events began earlier in the experimental plots relative to the controls, duration of phenophases did not increase. The evergreen shrub, Cassiope tetragona, did not respond to either experimental treatment. While the other species did respond to experimental treatments, the total active period for these species did not increase relative to the control. Air temperature was consistently the best predictor of phenology. Our results imply that some evergreen shrubs (i.e., C. tetragona) will not capitalize on earlier favorable growing conditions, putting them at a competitive disadvantage relative to phenotypically plastic deciduous shrubs. Our findings also suggest that an early onset of the growing season as a result of decreased snow cover will not necessarily result in greater tundra productivity.


Assuntos
Mudança Climática , Magnoliopsida/crescimento & desenvolvimento , Estações do Ano , Neve , Solo , Temperatura , Tundra , Alaska , Especificidade da Espécie
11.
J Immunol ; 188(1): 122-34, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22105998

RESUMO

The lamin B receptor (LBR) is a highly unusual inner nuclear membrane protein with multiple functions. Reduced levels are associated with decreased neutrophil lobularity, whereas complete absence of LBR results in severe skeletal dysplasia and in utero/perinatal lethality. We describe a mouse pedigree, Lym3, with normal bone marrow and thymic development but profound and progressive lymphopenia particularly within the T cell compartment. This defect arises from a point mutation within the Lbr gene with only trace mutant protein detectable in homozygotes, albeit sufficient for normal development. Reduced T cell homeostatic proliferative potential and life span in vivo were found to contribute to lymphopenia. To investigate the role of LBR in gene silencing in hematopoietic cells, we examined gene expression in wild-type and mutant lymph node CD8 T cells and bone marrow neutrophils. Although LBR deficiency had a very mild impact on gene expression overall, for common genes differentially expressed in both LBR-deficient CD8 T cells and neutrophils, gene upregulation prevailed, supporting a role for LBR in their suppression. In summary, this study demonstrates that LBR deficiency affects not only nuclear architecture but also proliferation, cell viability, and gene expression of hematopoietic cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Senescência Celular/imunologia , Células-Tronco Hematopoéticas/imunologia , Linfopenia/imunologia , Mutação Puntual , Receptores Citoplasmáticos e Nucleares , Animais , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Senescência Celular/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Células-Tronco Hematopoéticas/patologia , Linfopenia/genética , Linfopenia/patologia , Camundongos , Camundongos Knockout , Receptor de Lamina B
12.
Mucosal Immunol ; 17(3): 371-386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492744

RESUMO

Interleukin-(IL) 22 production by intestinal group 3 innate lymphoid cells (ILC3) is critical to maintain gut homeostasis. However, IL-22 needs to be tightly controlled; reduced IL-22 expression is associated with intestinal epithelial barrier defect while its overexpression promotes tumor development. Here, using a single-cell ribonucleic acid sequencing approach, we identified a core set of genes associated with increased IL-22 production by ILC3. Among these genes, programmed cell death 1 (PD-1), extensively studied in the context of cancer and chronic infection, was constitutively expressed on a subset of ILC3. These cells, found in the crypt of the small intestine and colon, displayed superior capacity to produce IL-22. PD-1 expression on ILC3 was dependent on the microbiota and was induced during inflammation in response to IL-23 but, conversely, was reduced in the presence of Notch ligand. PD-1+ ILC3 exhibited distinct metabolic activity with increased glycolytic, lipid, and polyamine synthesis associated with augmented proliferation compared with their PD-1- counterparts. Further, PD-1+ ILC3 showed increased expression of mitochondrial antioxidant proteins which enable the cells to maintain their levels of reactive oxygen species. Loss of PD-1 signaling in ILC3 led to reduced IL-22 production in a cell-intrinsic manner. During inflammation, PD-1 expression was increased on natural cytotoxicity receptor (NCR)- ILC3 while deficiency in PD-1 expression resulted in increased susceptibility to experimental colitis and failure to maintain gut barrier integrity. Collectively, our findings uncover a new function of the PD-1 and highlight the role of PD-1 signaling in the maintenance of gut homeostasis mediated by ILC3 in mice.


Assuntos
Homeostase , Imunidade Inata , Interleucina 22 , Interleucinas , Linfócitos , Camundongos Knockout , Receptor de Morte Celular Programada 1 , Animais , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Linfócitos/imunologia , Linfócitos/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Transdução de Sinais , Colite/imunologia , Intestinos/imunologia , Camundongos Endogâmicos C57BL , Humanos , Modelos Animais de Doenças
13.
Proc Natl Acad Sci U S A ; 107(50): 21689-94, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21115812

RESUMO

Thrombopoietin (TPO), acting through its receptor Mpl, has two major physiological roles: ensuring production of sufficient platelets via stimulation of megakaryocyte production and maintaining hematopoietic stem cell (HSC) quiescence. Mpl also controls circulating TPO concentration via receptor-mediated internalization and degradation. Here, we demonstrate that the megakaryocytosis and increased platelet mass in mice with mutations in the Myb or p300 genes causes reduced circulating TPO concentration and TPO starvation of the stem-cell compartment, which is exacerbated because these cells additionally exhibit impaired responsiveness to TPO. HSCs from Myb(Plt4/Plt4) mice show altered expression of TPO-responsive genes and, like HSCs from Tpo and Mpl mutant mice, exhibit increased cycling and a decline in the number of HSCs with age. These studies suggest that disorders of platelet number can have profound effects on the HSC compartment via effects on the feedback regulation of circulating TPO concentration.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Animais , Plaquetas/metabolismo , Diferenciação Celular/fisiologia , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Células-Tronco Hematopoéticas/citologia , Megacariócitos/citologia , Megacariócitos/fisiologia , Camundongos , Camundongos Knockout , Análise em Microsséries , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Receptores de Trombopoetina/metabolismo , Trombopoetina/sangue
14.
Sci Immunol ; 8(85): eabo4365, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37450574

RESUMO

Vγ9Vδ2 T cells are the largest population of γδ T cells in adults and can play important roles in providing effective immunity against cancer and infection. Many studies have suggested that peripheral Vγ9Vδ2 T cells are derived from the fetal liver and thymus and that the postnatal thymus plays little role in the development of these cells. More recent evidence suggested that these cells may also develop postnatally in the thymus. Here, we used high-dimensional flow cytometry, transcriptomic analysis, functional assays, and precursor-product experiments to define the development pathway of Vγ9Vδ2 T cells in the postnatal thymus. We identify three distinct stages of development for Vγ9Vδ2 T cells in the postnatal thymus that are defined by the progressive acquisition of functional potential and major changes in the expression of transcription factors, chemokines, and other surface markers. Furthermore, our analysis of donor-matched thymus and blood revealed that the molecular requirements for the development of functional Vγ9Vδ2 T cells are delivered predominantly by the postnatal thymus and not in the periphery. Tbet and Eomes, which are required for IFN-γ and TNFα expression, are up-regulated as Vγ9Vδ2 T cells mature in the thymus, and mature thymic Vγ9Vδ2 T cells rapidly express high levels of these cytokines after stimulation. Similarly, the postnatal thymus programs Vγ9Vδ2 T cells to express the cytolytic molecules, perforin, granzyme A, and granzyme K. This study provides a greater understanding of how Vγ9Vδ2 T cells develop in humans and may lead to opportunities to manipulate these cells to treat human diseases.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Adulto , Humanos , Timo , Perfilação da Expressão Gênica
15.
Nucleic Acids Res ; 38(7): 2168-76, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20056656

RESUMO

A fundamental question in microarray analysis is the estimation of the number of expressed probes in different RNA samples. Negative control probes available in the latest microarray platforms, such as Illumina whole genome expression BeadChips, provide a unique opportunity to estimate the number of expressed probes without setting a threshold. A novel algorithm was proposed in this study to estimate the number of expressed probes in an RNA sample by utilizing these negative controls to measure background noise. The performance of the algorithm was demonstrated by comparing different generations of Illumina BeadChips, comparing the set of probes targeting well-characterized RefSeq NM transcripts with other probes on the array and comparing pure samples with heterogenous samples. Furthermore, hematopoietic stem cells were found to have a larger transcriptome than progenitor cells. Aire knockout medullary thymic epithelial cells were shown to have significantly less expressed probes than matched wild-type cells.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos/análise , Animais , Células-Tronco Hematopoéticas/metabolismo , Camundongos , RNA Mensageiro/análise , Células-Tronco/metabolismo , Timo/metabolismo , Fatores de Transcrição/genética , Proteína AIRE
16.
Proc Natl Acad Sci U S A ; 106(33): 13814-9, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666492

RESUMO

Fli-1 and Erg are closely related members of the Ets family of transcription factors. Both genes are translocated in human cancers, including Ewing's sarcoma, leukemia, and in the case of Erg, more than half of all prostate cancers. Although evidence from mice and humans suggests that Fli-1 is required for megakaryopoiesis, and that Erg is required for normal adult hematopoietic stem cell (HSC) regulation, their precise physiological roles remain to be defined. To elucidate the relationship between Fli-1 and Erg in hematopoiesis, we conducted an analysis of mice carrying mutations in both genes. Our results demonstrate that there is a profound genetic interaction between Fli-1 and Erg. Double heterozygotes displayed phenotypes more dramatic than single heterozygotes: severe thrombocytopenia, with a significant deficit in megakaryocyte numbers and evidence of megakaryocyte dysmorphogenesis, and loss of HSCs accompanied by a reduction in the number of committed hematopoietic progenitor cells. These results illustrate an indispensable requirement for both Fli-1 and Erg in normal HSC and megakaryocyte homeostasis, and suggest these transcription factors may coregulate common target genes.


Assuntos
Regulação da Expressão Gênica , Megacariócitos/citologia , Proteínas Oncogênicas/química , Proteína Proto-Oncogênica c-fli-1/química , Animais , Plaquetas/metabolismo , Linhagem da Célula , Cruzamentos Genéticos , Heterozigoto , Humanos , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Mutação , Trombopoetina/metabolismo , Fatores de Transcrição , Regulador Transcricional ERG
17.
Nat Cell Biol ; 23(3): 219-231, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33649477

RESUMO

Regulation of haematopoietic stem and progenitor cell (HSPC) fate is crucial during homeostasis and under stress conditions. Here we examine the aetiology of the Flt3 ligand (Flt3L)-mediated increase of type 1 conventional dendritic cells (cDC1s). Using cellular barcoding we demonstrate this occurs through selective clonal expansion of HSPCs that are primed to produce cDC1s and not through activation of cDC1 fate by other HSPCs. In particular, multi/oligo-potent clones selectively amplify their cDC1 output, without compromising the production of other lineages, via a process we term tuning. We then develop Divi-Seq to simultaneously profile the division history, surface phenotype and transcriptome of individual HSPCs. We discover that Flt3L-responsive HSPCs maintain a proliferative 'early progenitor'-like state, leading to the selective expansion of multiple transitional cDC1-primed progenitor stages that are marked by Irf8 expression. These findings define the mechanistic action of Flt3L through clonal tuning, which has important implications for other models of 'emergency' haematopoiesis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Proteínas de Membrana/farmacologia , RNA-Seq , Análise de Célula Única , Transcriptoma/efeitos dos fármacos , Animais , Linhagem da Célula , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
18.
Infect Immun ; 78(6): 2734-44, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20368343

RESUMO

Genetic linkage studies of the host response to Leishmania major, the causative agent of cutaneous leishmaniasis, have identified significant genetic complexity in humans and mice. In the mouse model, multiple loci have been implicated in susceptibility to infection, but to date, the genes underlying these loci have not been identified. We now describe the contribution of a novel candidate gene, Fli1, to both L. major resistance and enhanced wound healing. We have previously mapped the L. major response locus, lmr2, to proximal chromosome 9 in a genetic cross between the resistant C57BL/6 strain and the susceptible BALB/c strain. We now show that the presence of the resistant C57BL/6 lmr2 allele in susceptible BALB/c mice confers an enhanced L. major resistance and wound healing phenotype. Fine mapping of the lmr2 locus permitted the localization of the lmr2 quantitative trait locus to a 5-Mb interval comprising 21 genes, of which microarray analysis was able to identify differential expression in 1 gene-Fli1. Analysis of Fli1 expression in wounded and L. major-infected skin and naïve and infected lymph nodes validated the importance of Fli1 in lesion resolution and wound healing and identified 3 polymorphisms in the Fli1 promoter, among which a GA repeat element may be the important contributor.


Assuntos
Predisposição Genética para Doença , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Proteína Proto-Oncogênica c-fli-1/fisiologia , Cicatrização , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Perfilação da Expressão Gênica , Loci Gênicos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polimorfismo Genético , Regiões Promotoras Genéticas
19.
Cell Stem Cell ; 25(2): 258-272.e9, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374198

RESUMO

Tumors are composed of phenotypically heterogeneous cancer cells that often resemble various differentiation states of their lineage of origin. Within this hierarchy, it is thought that an immature subpopulation of tumor-propagating cancer stem cells (CSCs) differentiates into non-tumorigenic progeny, providing a rationale for therapeutic strategies that specifically eradicate CSCs or induce their differentiation. The clinical success of these approaches depends on CSC differentiation being unidirectional rather than reversible, yet this question remains unresolved even in prototypically hierarchical malignancies, such as acute myeloid leukemia (AML). Here, we show in murine and human models of AML that, upon perturbation of endogenous expression of the lineage-determining transcription factor PU.1 or withdrawal of established differentiation therapies, some mature leukemia cells can de-differentiate and reacquire clonogenic and leukemogenic properties. Our results reveal plasticity of CSC maturation in AML, highlighting the need to therapeutically eradicate cancer cells across a range of differentiation states.


Assuntos
Diferenciação Celular/fisiologia , Transdiferenciação Celular/fisiologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Carcinogênese , Plasticidade Celular , Células Cultivadas , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Tretinoína/metabolismo
20.
J Leukoc Biol ; 104(1): 195-204, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29758105

RESUMO

Eosinophils are important in fighting parasitic infections and are implicated in the pathogenesis of asthma and allergy. IL-5 is a critical regulator of eosinophil development, controlling proliferation, differentiation, and maturation of the lineage. Mice that constitutively express IL-5 have in excess of 10-fold more eosinophils in the hematopoietic organs than their wild type (WT) counterparts. We have identified that much of this expansion is in a population of Siglec-F high eosinophils, which are rare in WT mice. In this study, we assessed transcription in myeloid progenitors, eosinophil precursors, and Siglec-F medium and Siglec-F high eosinophils from IL-5 transgenic mice and in doing so have created a useful resource for eosinophil biologists. We have then utilized these populations to construct an eosinophil trajectory based on gene expression and to identify gene sets that are associated with eosinophil lineage progression. Cell cycle genes were significantly associated with the trajectory, and we experimentally demonstrate an increasing trend toward quiescence along the trajectory. Additionally, we found gene expression changes associated with constitutive IL-5 signaling in eosinophil progenitors, many of which were not observed in eosinophils.


Assuntos
Eosinófilos/imunologia , Perfilação da Expressão Gênica , Interleucina-5/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Eosinófilos/citologia , Eosinófilos/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos Transgênicos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA