Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474299

RESUMO

NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.


Assuntos
Corantes Fluorescentes , Proteínas , Corantes Fluorescentes/química
2.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175667

RESUMO

In this work, we showed that the well-known NanoLuc luciferase can act as a fluorogen activating protein for various arylidene-imidazolones structurally similar to the Kaede protein chromophore. We showed that such compounds can be used as fluorescent sensors for this protein and can also be used in pairs with it in fluorescent microscopy as a genetically encoded tag.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/metabolismo , Luciferases/genética , Microscopia de Fluorescência
3.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373071

RESUMO

In this work, we have shown that the introduction of a trifluoromethyl group into the me-ta-position of arylidene imidazolones (GFP chromophore core) leads to a dramatic increase in their fluorescence in nonpolar and aprotic media. The presence of a pronounced solvent-dependent gradation of fluorescence intensity makes it possible to use these substances as fluorescent polarity sensors. In particular, we showed that one of the created compounds could be used for selective labeling of the endoplasmic reticulum of living cells.


Assuntos
Corantes , Proteínas de Fluorescência Verde , Solventes , Espectrometria de Fluorescência
4.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232662

RESUMO

NanoFAST is a fluorogen-activating protein and can be considered one of the smallest encodable fluorescent tags. Being a shortened variant of another fluorescent tag, FAST, nanoFAST works nicely only with one out of all known FAST ligands. This substantially limits the applicability of this protein. To find the reason for such a behavior, we investigated the spatial structure and dynamics of nanoFAST, both in the apo state and in the complex with its fluorogen molecule, using the solution NMR spectroscopy. We showed that the truncation of FAST did not affect the structure of the remaining part of the protein. Our data suggest that the deleted N-terminus of FAST destabilizes the C-terminal domain in the apo state. While it does not contact the fluorogen directly, it serves as a free energy reservoir that enhances the ligand binding propensity of the protein. The structure of nanoFAST/HBR-DOM2 complex reveals the atomistic details of nanoFAST interactions with the rhodanine-based ligands and explains the ligand specificity. NanoFAST selects ligands with the lowest dissociation constants, 2,5-disubstituted 4-hydroxybenzyldienerhodainines, which allow the non-canonical intermolecular CH-N hydrogen bonding and provide the optimal packing of the ligand within the hydrophobic cavity of the protein.


Assuntos
Rodanina , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Proteínas
5.
Molecules ; 27(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014513

RESUMO

A new simple one-pot two-step protocol for the synthesis of 2-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate from 2-(2-(benzylamino)benzylidene)malonate under the action of BF3·Et2O was developed. It was shown that the reaction proceeds through the formation of a stable iminium intermediate containing a difluoroboryl bridge in the dicarbonyl fragment of the molecule.


Assuntos
Quinolinas , Ácidos Carboxílicos , Ciclização
6.
Chemistry ; 27(12): 3986-3990, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33336838

RESUMO

Using benzylidene imidazolone core, we created a panel of color-shifted fluorogenic ligands for FAST protein without compromise to the binding efficiency and the utility for live-cell protein labeling. This study highlights the potential of benzylidene imidazolones derivatives for rapid expansion of a pallet of live-cell fluorogenic labeling tools.


Assuntos
Corantes Fluorescentes , Proteínas
7.
Chemistry ; 27(35): 8946-8950, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33938061

RESUMO

Fluorescence-activating proteins (FAPs) that bind a chromophore and activate its fluorescence have gained popularity in bioimaging. The fluorescence-activating and absorption-shifting tag (FAST) is a light-weight FAP that enables fast reversible fluorogen binding, thus advancing multiplex and super-resolution imaging. However, the rational design of FAST-specific fluorogens with large fluorescence enhancement (FE) remains challenging. Herein, a new fluorogen directly engineered from green fluorescent protein (GFP) chromophore by a unique double-donor-one-acceptor strategy, which exhibits an over 550-fold FE upon FAST binding and a high extinction coefficient of approximately 100,000 M-1 cm-1 , is reported. Correlation analysis of the excited state nonradiative decay rates and environmental factors reveal that the large FE is caused by nonpolar protein-fluorogen interactions. Our deep insights into structure-function relationships could guide the rational design of bright fluorogens for live-cell imaging with extended spectral properties such as redder emissions.


Assuntos
Corantes Fluorescentes , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência
8.
Phys Chem Chem Phys ; 23(27): 14636-14648, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34212170

RESUMO

Since green fluorescent protein (GFP) has revolutionized molecular and cellular biology for about three decades, there has been a keen interest in understanding, designing, and controlling the fluorescence properties of GFP chromophore (i.e., HBDI) derivatives from the protein matrix to solution. Amongst these cross-disciplinary efforts, the elucidation of excited-state dynamics of HBDI derivatives holds the key to correlating the light-induced processes and fluorescence quantum yield (FQY). Herein, we implement steady-state electronic spectroscopy, femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and quantum calculations to study a series of mono- and dihalogenated HBDI derivatives (X = F, Cl, Br, 2F, 2Cl, and 2Br) in basic aqueous solution, gaining new insights into the photophysical reaction coordinates. In the excited state, the halogenated "floppy" chromophores exhibit an anti-heavy atom effect, reflected by strong correlations between FQY vs. Franck-Condon energy (EFC) or Stokes shift, and knrvs. EFC, as well as a swift bifurcation into the I-ring (major) and P-ring (minor) twisting motions. In the ground state, both ring-twisting motions become more susceptible to sterics and exhibit spectral signatures from the halogen-dependent hot ground-state absorption band decay in TA data. We envision this type of systematic analysis of the halogenated HBDI derivatives to provide guiding principles for the site-specific modification of GFP chromophores, and expand design space for brighter and potentially photoswitchable organic chemical probes in aqueous solution with discernible spectral signatures throughout the photocycle.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Halogenação , Cinética , Luz , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica , Espectrometria de Fluorescência , Relação Estrutura-Atividade
9.
J Chem Phys ; 155(7): 071103, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418944

RESUMO

We introduce Active Orbital Preservation for Multiconfigurational Self-Consistent Field (AOP-MCSCF), an automated approach to improving the consistency of active space orbitals over multiple molecular configurations. Our approach is based on maximum overlap with a reference set of active space orbitals taken from a single geometry of a chromophore in the gas phase and can be used to automatically preserve the appropriate orbitals of the chromophore across multiple thermally sampled configurations, even when the chromophore is solvated by quantum-mechanically treated water molecules. In particular, using the singular value decomposition of a Molecular Orbital (MO) overlap matrix between the system and reference, we rotate the MOs of the system to align with the reference active space orbitals and use the resulting rotated orbitals as an initial guess to a MCSCF calculation. We demonstrate the approach on aqueous p-hydroxybenzylidene-imidazolinone (HBI) and find that AOP-MCSCF converges to the "correct" orbitals for over 90% of 3000 thermally sampled configurations. In addition, we compute the linear absorption spectrum and find excellent agreement with new experimental measurements up to 5.4 eV (230 nm). We show that electrostatic contributions to the solvation energy of HBI largely explain the observed state-dependent solvatochromism.

10.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948442

RESUMO

Bioimaging techniques require development of a wide variety of fluorescent probes that absorb and emit red light. One way to shift absorption and emission of a chromophore to longer wavelengths is to modify its chemical structure by adding polycyclic aromatic hydrocarbon (PAH) fragments, thus increasing the conjugation length of a molecule while maintaining its rigidity. Here, we consider four novel classes of conformationally locked Green Fluorescent Protein (GFP) chromophore derivatives obtained by extending their aromatic systems in different directions. Using high-level ab initio quantum chemistry calculations, we show that the alteration of their electronic structure upon annulation may unexpectedly result in a drastic change of their fluorescent properties. A flip of optically bright and dark electronic states is most prominent in the symmetric fluorene-based derivative. The presence of a completely dark lowest-lying excited state is supported by the experimentally measured extremely low fluorescence quantum yield of the newly synthesized compound. Importantly, one of the asymmetric modes of annulation provides a very promising strategy for developing red-shifted molecular emitters with an absorption wavelength of ∼600 nm, having no significant impact on the character of the bright S-S1 transition.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/síntese química , Hidrocarbonetos Policíclicos Aromáticos/química , Proteínas de Fluorescência Verde/química , Estrutura Molecular , Teoria Quântica , Espectrometria de Fluorescência
11.
J Chem Phys ; 152(2): 021101, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941340

RESUMO

Green fluorescent protein (GFP) has enabled a myriad of bioimaging advances due to its photophysical and photochemical properties. To deepen the mechanistic understanding of such light-induced processes, novel derivatives of GFP chromophore p-HBDI were engineered by fluorination or bromination of the phenolic moiety into superphotoacids, which efficiently undergo excited-state proton transfer (ESPT) in aqueous solution within the short lifetime of the excited state, as opposed to p-HBDI where efficient ESPT is not observed. In addition, we tuned the excited-state lifetime from picoseconds to nanoseconds by conformational locking of the p-HBDI backbone, essentially transforming the nonfluorescent chromophores into highly fluorescent ones. The unlocked superphotoacids undergo a barrierless ESPT without much solvent activity, whereas the locked counterparts exhibit two distinct solvent-involved ESPT pathways. Comparative analysis of femtosecond transient absorption spectra of these unlocked and locked superphotoacids reveals that the ESPT rates adopt an "inverted" kinetic behavior as the thermodynamic driving force increases upon locking the backbone. Further experimental and theoretical investigations are expected to shed more light on the interplay between the modified electronic structure (mainly by dihalogenation) and nuclear motions (by conformational locking) of the functionalized GFP derivatives (e.g., fluorescence on and off).

12.
Sensors (Basel) ; 20(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050425

RESUMO

Aptasensors became popular instruments in bioanalytical chemistry and molecular biology. To increase specificity, perspective signaling elements in aptasensors can be separated into a G-quadruplex (G4) part and a free fluorescent dye that lights up upon binding to the G4 part. However, current systems are limited by relatively low enhancement of fluorescence upon dye binding. Here, we added duplex modules to G4 structures, which supposedly cause the formation of a dye-binding cavity between two modules. Screening of multiple synthetic GFP chromophore analogues and variation of the duplex module resulted in the selection of dyes that light up after complex formation with two-module structures and their RNA analogues by up to 20 times compared to parent G4s. We demonstrated that the short duplex part in TBA25 is preferable for fluorescence light up in comparison to parent TBA15 molecule as well as TBA31 and TBA63 stabilized by longer duplexes. Duplex part of TBA25 may be partially unfolded and has reduced rigidity, which might facilitate optimal dye positioning in the joint between G4 and the duplex. We demonstrated dye enhancement after binding to modified TBA, LTR-III, and Tel23a G4 structures and propose that such architecture of short duplex-G4 signaling elements will enforce the development of improved aptasensors.


Assuntos
Corantes Fluorescentes/química , Quadruplex G , Proteínas de Fluorescência Verde/química , Fluorescência , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Oligonucleotídeos/química , Temperatura de Transição
13.
Chemistry ; 25(41): 9592-9596, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31111975

RESUMO

A genetically encoded fluorescent tag for live cell microscopy is presented. This tag is composed of previously published fluorogen-activating protein FAST and a novel fluorogenic derivative of green fluorescent protein (GFP)-like chromophore with red fluorescence. The reversible binding of the novel fluorogen and FAST is accompanied by three orders of magnitude increase in red fluorescence (580-650 nm). The proposed dye instantly stains target cellular proteins fused with FAST, washes out in a minute timescale, and exhibits higher photostability of the fluorescence signal in confocal and widefield microscopy, in contrast with previously published fluorogen:FAST complexes.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Rodanina/análogos & derivados , Núcleo Celular/ultraestrutura , Fluorescência , Células HEK293 , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Imagem Óptica
14.
J Org Chem ; 84(23): 15417-15428, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31702147

RESUMO

An efficient and high-yielding strategy to prepare "unsymmetrical" 4-aryl-isoxazol-3,5-dicarboxylic acid derivatives from nitroacetic esters and aromatic aldehydes has been developed. The strategy is based on the isolation and usage of the previously missed intermediate of the Dornow reaction-5-hydroxy-6-oxo-4-aryl-6H-1,2-oxazine-3-carboxylates. In addition, the mechanism of the Dornow reaction was partially revised.

15.
Int J Mol Sci ; 19(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486502

RESUMO

Fluorogens are an attractive type of dye for imaging applications, eliminating time-consuming washout steps from staining protocols. With just a handful of reported fluorogen-protein pairs, mostly in the green region of spectra, there is a need for the expansion of their spectral range. Still, the origins of solvatochromic and fluorogenic properties of the chromophores suitable for live-cell imaging are poorly understood. Here we report on the synthesis and labeling applications of novel red-shifted fluorogenic cell-permeable green fluorescent protein (GFP) chromophore analogs.


Assuntos
Proteínas de Fluorescência Verde/química , Lipocalinas/química , Microscopia de Fluorescência
16.
Phys Chem Chem Phys ; 18(38): 26703-26711, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27711376

RESUMO

We report the synthesis and characterization of a pH-sensitive fluorescence switch based on a conformationally-locked green fluorescent protein (GFP) chromophore. The chromophore differs from difluoroboryl-locked parent by the addition of a titratable alcohol group on the imidazolinone ring. The chromophore is fluorescent at pH ≤ 5, but becomes non-fluorescent at higher pH, where the substituent is ionized. We use a quantum chemical model to show that the mechanism of the fluorescence turn-off is electronically analogous to photochemical meta effects in aryl-containing systems.

17.
Chemistry ; 20(41): 13234-41, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25171432

RESUMO

A novel class of fluorescent dyes based on conformationally locked GFP chromophore is reported. These dyes are characterized by red-shifted spectra, high fluorescence quantum yields and pH-independence in physiological pH range. The intra- and intermolecular mechanisms of radiationless deactivation of ABDI-BF2 fluorophore by selective structural locking of various conformational degrees of freedom were studied. A unique combination of solvatochromic and lipophilic properties together with "infinite" photostability (due to a dynamic exchange between free and bound dye) makes some of the novel dyes promising bioinspired tools for labeling cellular membranes, lipid drops and other organelles.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/metabolismo , Aminação , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solventes/química , Espectrometria de Fluorescência
18.
Commun Biol ; 7(1): 799, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956304

RESUMO

In this paper, we propose a fluorescence-lifetime imaging microscopy (FLIM) multiplexing system based on the fluorogen-activating protein FAST. This genetically encoded fluorescent labeling platform employs FAST mutants that activate the same fluorogen but provide different fluorescence lifetimes for each specific protein-dye pair. All the proposed probes with varying lifetimes possess nearly identical and the smallest-in-class size, along with quite similar steady-state optical properties. In live mammalian cells, we target these chemogenetic tags to two intracellular structures simultaneously, where their fluorescence signals are clearly distinguished by FLIM. Due to the unique structure of certain fluorogens under study, their complexes with FAST mutants display a monophasic fluorescence decay, which may facilitate enhanced multiplexing efficiency by reducing signal cross-talks and providing optimal prerequisites for signal separation upon co-localized and/or spatially overlapped labeling.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Humanos , Animais , Fluorescência , Mutação
19.
Commun Biol ; 5(1): 706, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840781

RESUMO

"Fluorescence-Activating and absorption-Shifting Tag" (FAST) is a well-studied fluorogen-activating protein with high brightness and low size, able to activate a wide range of fluorogens. This makes FAST a promising target for both protein and fluorogen optimization. Here, we describe the structure-based rational design of the enhanced FAST mutants, optimized for the N871b fluorogen. Using the spatial structure of the FAST/N871b complex, NMR relaxation analysis, and computer simulations, we identify the mobile regions in the complex and suggest mutations that could stabilize both the protein and the ligand. Two of our mutants appear brighter than the wild-type FAST, and these mutants provide up to 35% enhancement for several other fluorogens of similar structure, both in vitro and in vivo. Analysis of the mutants by NMR reveals that brighter mutants demonstrate the highest stability and lowest length of intermolecular H-bonds. Computer simulations provide the structural basis for such stabilization.


Assuntos
Corantes Fluorescentes , Proteínas , Fluorescência , Corantes Fluorescentes/química
20.
Biomolecules ; 11(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680042

RESUMO

Green fluorescent protein (GFP) chromophore and its congeners draw significant attention mostly for bioimaging purposes. In this work we probed these compounds as antiviral agents. We have chosen LTR-III DNA G4, the major G-quadruplex (G4) present in the long terminal repeat (LTR) promoter region of the human immunodeficiency virus-1 (HIV-1), as the target for primary screening and designing antiviral drug candidates. The stabilization of this G4 was previously shown to suppress viral gene expression and replication. FRET-based high-throughput screening (HTS) of 449 GFP chromophore-like compounds revealed a number of hits, sharing some general structural features. Structure-activity relationships (SAR) for the most effective stabilizers allowed us to establish structural fragments, important for G4 binding. Synthetic compounds, developed on the basis of SAR analysis, exhibited high LTR-III G4 stabilization level. NMR spectroscopy and molecular modeling revealed the possible formation of LTR-III G4-ligand complex with one of the lead selective derivative ZS260.1 positioned within the cavity, thus supporting the LTR-III G4 attractiveness for drug targeting. Selected compounds showed moderate activity against HIV-I (EC50 1.78-7.7 µM) in vitro, but the activity was accompanied by pronounced cytotoxicity.


Assuntos
Quadruplex G , Proteínas de Fluorescência Verde/química , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/química , Proteínas de Fluorescência Verde/farmacologia , Infecções por HIV/virologia , Repetição Terminal Longa de HIV/efeitos dos fármacos , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/patogenicidade , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA