Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Appl Clin Med Phys ; 23(11): e13810, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36316761

RESUMO

PURPOSE: To quantify the clinical practice of respiratory motion management in radiation oncology. METHODS: A respiratory motion management survey was designed and conducted based on clinician survey guidelines. The survey was administered to American Association of Physicists in Medicine (AAPM) members on 17 August 2020 and closed on 13 September 2020. RESULTS: A total of 527 respondents completed the entire survey and 651 respondents completed part of the survey, with the partially completed surveys included in the analysis. Overall, 84% of survey respondents used deep inspiration breath hold for left-sided breast cancer. Overall, 83% of respondents perceived respiratory motion management for thoracic and abdominal cancer radiotherapy patients to be either very important or required. Overall, 95% of respondents used respiratory motion management for thoracic and abdominal sites, with 36% of respondents using respiratory motion management for at least 90% of thoracic and abdominal patients. The majority (60%) of respondents used the internal target volume method to treat thoracic and abdominal cancer patients, with 25% using breath hold or abdominal compression and 13% using gating or tracking. CONCLUSIONS: A respiratory motion management survey has been completed by AAPM members. Respiratory motion management is generally considered very important or required and is widely used for breast, thoracic, and abdominal cancer treatments.


Assuntos
Radioterapia (Especialidade) , Humanos , Estados Unidos , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X/métodos , Suspensão da Respiração , Movimento (Física) , Planejamento da Radioterapia Assistida por Computador/métodos , Inquéritos e Questionários
2.
Acta Neuropathol ; 134(1): 113-127, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28527045

RESUMO

Neuronal loss in numerous neurodegenerative disorders has been linked to protein aggregation and oxidative stress. Emerging data regarding overlapping proteinopathy in traditionally distinct neurodegenerative diseases suggest that disease-modifying treatments targeting these pathological features may exhibit efficacy across multiple disorders. Here, we describe proteinopathy distinct from classic synucleinopathy, predominantly comprised of the anti-oxidant enzyme superoxide dismutase-1 (SOD1), in the Parkinson's disease brain. Significant expression of this pathology closely reflected the regional pattern of neuronal loss. The protein composition and non-amyloid macrostructure of these novel aggregates closely resembles that of neurotoxic SOD1 deposits in SOD1-associated familial amyotrophic lateral sclerosis (fALS). Consistent with the hypothesis that deposition of protein aggregates in neurodegenerative disorders reflects upstream dysfunction, we demonstrated that SOD1 in the Parkinson's disease brain exhibits evidence of misfolding and metal deficiency, similar to that seen in mutant SOD1 in fALS. Our data suggest common mechanisms of toxic SOD1 aggregation in both disorders and a potential role for SOD1 dysfunction in neuronal loss in the Parkinson's disease brain. This shared restricted proteinopathy highlights the potential translation of therapeutic approaches targeting SOD1 toxicity, already in clinical trials for ALS, into disease-modifying treatments for Parkinson's disease.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/patologia , Doença de Parkinson/patologia , Superóxido Dismutase-1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/enzimologia , Encéfalo/enzimologia , Contagem de Células , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Corpos de Lewy/enzimologia , Corpos de Lewy/patologia , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Neurônios/enzimologia , Neurônios/patologia , Doença de Parkinson/enzimologia , Agregação Patológica de Proteínas/enzimologia , Agregação Patológica de Proteínas/patologia , Dobramento de Proteína , Medula Espinal/enzimologia , Medula Espinal/patologia
3.
Cytokine ; 78: 79-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26687629

RESUMO

Cerebral malaria (CM) has a high mortality rate and incidence of neurological sequelae in survivors. Hypoxia and cytokine expression in the brain are two mechanisms thought to contribute to the pathogenesis of CM. The cytokines interferon (IFN)-γ and lymphotoxin (LT)-α and the chemokine CXCL10 are essential for the development of CM in a mouse model. Furthermore, serum IFN-γ protein levels are higher in human CM than in controls, and CXCL10 is elevated in both serum and cerebrospinal fluid in Ghanaian paediatric CM cases. Astrocytes actively participate in CNS pathologies, becoming activated in response to various stimuli including cytokines. Astrocyte activation also occurs in murine and human CM. We here determined the responsiveness of mouse and human astrocytes to IFN-γ and LT-α, with the aim of further elucidating the role of astrocytes in CM pathogenesis. Initially we confirmed that Ifn-γ and Cxcl10 are expressed in the brain in murine CM, and that the increased Cxcl10 expression is IFN-γ-dependant. IFN-γ induced CXCL10 production in human and murine astrocytes in vitro. The degree of induction was increased synergistically in the presence of LT-α. IFN-γ induced the expression of receptors for LT-α, while LT-α increased the expression of the receptor for IFN-γ, in the astrocytes. This cross-induction may explain the synergistic effect of the two cytokines on CXCL10 production. Expression of these receptors also was upregulated in the brain in murine CM. The results suggest that astrocytes contribute to CM pathogenesis by producing CXCL10 in response to IFN-γ and LT-α.


Assuntos
Astrócitos/imunologia , Quimiocina CXCL10/genética , Citocinas/fisiologia , Interferon gama/imunologia , Linfotoxina-alfa/imunologia , Malária Cerebral/imunologia , Animais , Encéfalo/imunologia , Linhagem Celular , Células Cultivadas , Quimiocina CXCL10/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Gana , Humanos , Malária Cerebral/etiologia , Camundongos , Fator de Transcrição STAT1 , Fator de Necrose Tumoral alfa , Regulação para Cima/efeitos dos fármacos
4.
Stem Cells ; 33(1): 111-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25186311

RESUMO

The mechanisms involved in the anabolic effect of interferon gamma (IFNγ) on bone have not been carefully examined. Using microarray expression analysis, we found that IFNγ upregulates a set of genes associated with a tryptophan degradation pathway, known as the kynurenine pathway, in osteogenic differentiating human mesenchymal stem cells (hMSC). We, therefore, hypothesized that activation of the kynurenine pathway plays a role in osteoblastogenesis even in the absence of IFNγ. Initially, we observed a strong increase in tryptophan degradation during osteoblastogenesis with and without IFNγ in the media. We next blocked indoleamine 2,3-dioxygenase-1 (IDO1), the most important enzyme in the kynurenine pathway, using a siRNA and pharmacological approach and observed a strong inhibition of osteoblastogenesis with a concomitant decrease in osteogenic factors. We next examined the bone phenotype of Ido1 knockout (Ido1(-/-)) mice. Compared to their wild-type littermates, Ido1(-/-) mice exhibited osteopenia associated with low osteoblast and high osteoclast numbers. Finally, we tested whether the end products of the kynurenine pathway have an osteogenic effect on hMSC. We identified that picolinic acid had a strong and dose-dependent osteogenic effect in vitro. In summary, we demonstrate that the activation of the kynurenine pathway plays an important role during the commitment of hMSC into the osteoblast lineage in vitro, and that this process can be accelerated by exogenous addition of IFNγ. In addition, we found that mice lacking IDO1 activity are osteopenic. These data therefore support a new role for the kynurenine pathway and picolinic acid as essential regulators of osteoblastogenesis and as potential new targets of bone-forming cells in vivo.


Assuntos
Cinurenina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteoporose/metabolismo , Triptofano/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoporose/patologia
5.
Infect Immun ; 83(4): 1406-17, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644000

RESUMO

Gamma interferon (IFN-γ) drives antiparasite responses and immunopathology during infection with Plasmodium species. Immunity-related GTPases (IRGs) are a class of IFN-γ-dependent proteins that are essential for cell autonomous immunity to numerous intracellular pathogens. However, it is currently unknown whether IRGs modulate responses during malaria. We have used the Plasmodium berghei ANKA (PbA) model in which mice develop experimental cerebral malaria (ECM) to study the roles of IRGM1 and IRGM3 in immunopathology. Induction of mRNA for Irgm1 and Irgm3 was found in the brains and spleens of infected mice at times of peak IFN-γ production. Irgm3-/- but not Irgm1-/- mice were completely protected from the development of ECM, and this protection was associated with the decreased induction of inflammatory cytokines, as well as decreased recruitment and activation of CD8+ T cells within the brain. Although antigen-specific proliferation of transferred CD8+ T cells was not diminished compared to that of wild-type recipients following PbA infection, T cells transferred into Irgm3-/- recipients showed a striking impairment of effector differentiation. Decreased induction of several inflammatory cytokines and chemokines (interleukin-6, CCL2, CCL3, and CCL4), as well as enhanced mRNA expression of type-I IFNs, was found in the spleens of Irgm3-/- mice at day 4 postinfection. Together, these data suggest that protection from ECM pathology in Irgm3-/- mice occurs due to impaired generation of CD8+ effector function. This defect is nonintrinsic to CD8+ T cells. Instead, diminished T cell responses most likely result from defective initiation of inflammatory responses in myeloid cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , GTP Fosfo-Hidrolases/imunologia , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Transferência Adotiva , Animais , Antígenos de Protozoários/imunologia , Encéfalo/imunologia , Encéfalo/parasitologia , Encéfalo/patologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/transplante , Proliferação de Células/genética , Quimiocina CCL2/biossíntese , Quimiocina CCL3/biossíntese , Quimiocina CCL4/biossíntese , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Inflamação/genética , Inflamação/imunologia , Interferon Tipo I/biossíntese , Interferon gama/imunologia , Interleucina-6/biossíntese , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética
6.
J Exp Zool B Mol Dev Evol ; 324(2): 128-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25702628

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) enzymes have independently evolved to catalyze the first step in the catabolism of tryptophan (L-Trp) through the kynurenine pathway. TDO is found in almost all metazoan and many bacterial species, but not in fungi. We show that TDO enzymes have high catalytic-efficiency for L-Trp catabolism, regardless of their biological origin, suggesting that TDO has been an L-Trp-specific degrading enzyme throughout its evolution. Meanwhile, IDO was initially discovered in mammals, and subsequently has been found in lower vertebrates, several invertebrates, fungi and a number of bacterial species. Some lineages have independently generated multiple IDO paralogues through gene duplications. Interestingly, only mammalian IDO1s and fungal "typical" IDOs have high affinity and catalytic efficiency for L-Trp catabolism, comparable to TDOs. We show that invertebrate IDO enzymes have low affinity and catalytic efficiency for L-Trp catabolism. We suggest that the phylogenetic distribution of "low catalytic-efficiency IDOs" indicates the ancestral IDO also had low affinity and catalytic efficiency for L-Trp catabolism. IDOs with high catalytic-efficiency for L-Trp-catabolism may have evolved in certain lineages to fulfill particular biological roles. The low catalytic-efficiency IDOs have been well conserved in a number of lineages throughout their evolution, although it is not clear that the enzymes contribute significantly to L-Trp catabolism in these species. Investigation of other substrates and functions of the ancestral IDO and low catalytic efficiency IDOs may identify additional biological roles for these enzymes.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/genética , Triptofano Oxigenase/genética , Triptofano/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Molecular , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Invertebrados , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Triptofano Oxigenase/metabolismo
7.
Biochem Biophys Res Commun ; 450(1): 25-9, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24858687

RESUMO

Multiple-scattering (MS) analysis of EXAFS data on met-indoleamine 2,3-dioxygenase-2 (IDO2) and analysis of XANES have provided the first direct structural information about the axial donor ligands of the iron center for this recently discovered protein. At 10K, it exists in a low-spin bis(His) form with Fe-Np(av)=1.97Å, the Fe-NIm bond lengths of 2.11Å and 2.05Å, which is in equilibrium with a high-spin form at room temperature. The bond distances in the low-spin form are consistent with other low-spin hemeproteins, as is the XANES spectrum, which is closer to that of the low-spin met-Lb than that of the high-spin met-Mb. The potential physiological role of this spin equilibrium is discussed.


Assuntos
Heme/química , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/ultraestrutura , Ferro/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Conformação Proteica
8.
Brain Behav Immun ; 40: 252-68, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24607660

RESUMO

Interferon-gamma is known to play a complex modulatory role in immune defence during microbial infections. Its actions in pneumococcal meningitis, however, remain ill-defined. Here, a pathological role for IFN-γ was demonstrated using a murine model of pneumococcal meningitis, in that C57BL/6J mice deficient in this pro-inflammatory cytokine (IFN-γ(-/-)) showed less severe acute and long-term neuropathology following intracerebral challenge with Streptococcus pneumoniae. The absence of IFN-γ significantly lengthened the survival of mice that otherwise would have developed fatal clinical signs within two days of CNS infection. Compared to their wild-type counterparts, IFN-γ(-/-) mice showed a diminished inflammatory response (attenuated levels of pro-inflammatory cytokines in the cerebrospinal fluid) and milder brain pathologies (less BBB permeability to protein and brain haemorrhage) during the acute phase of disease. Following a full regime of antibiotic treatment, we found substantial brain injuries in the wild-type mice 10days after infection. IFN-γ(-/-) mice, however, showed decreased neuronal damage in both hippocampus and cortex. In the longer term (≈10weeks p.i.), the wild-type mice that had survived meningitis due to antibiotic treatment had neurobehavioural abnormalities including diurnal hypoactivity, nocturnal hyperactivity and impaired performance in a discrimination reversal task. IFN-γ(-/-) mice, concomitantly tested in the automated IntelliCage platform, had reduced behavioural and cognitive disorders compared to wild-type mice. Both IFN-γ(-/-) and wild-type survivors of pneumococcal meningitis showed impaired working memory in the IntelliCage-based complex patrolling task. These observations indicate an association between IFN-γ-driven acute brain pathology and the long-term neurological sequelae resulting from pneumococcal meningitis.


Assuntos
Encéfalo/imunologia , Encéfalo/patologia , Encefalite/imunologia , Interferon gama/fisiologia , Meningite Pneumocócica/imunologia , Animais , Comportamento Animal , Barreira Hematoencefálica/patologia , Hemorragia Cerebral/complicações , Citocinas/metabolismo , Modelos Animais de Doenças , Interferon gama/genética , Masculino , Meningite Pneumocócica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sobrevida
9.
Amino Acids ; 46(9): 2155-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24875753

RESUMO

Indoleamine 2,3-dioxygenase-2 (IDO2) is one of three enzymes (alongside tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase (IDO1)) that catalyse dioxygenation of L-tryptophan as the first step in the kynurenine pathway. Despite the reported expression of IDO2 in tumours, some fundamental characteristics of the enzyme, such as substrate specificity and inhibition selectivity, are still to be clearly defined. In this study, we report the kinetic and inhibition characteristics of recombinant human IDO2. Choosing from a series of likely IDO2 substrates, we screened 54 tryptophan derivatives and tryptophan-like molecules, and characterised the 8 with which the enzyme was most active. Specificity of IDO2 for the two isomers of 1-methyltryptophan was also evaluated and the findings compared with those obtained in other studies on IDO2 and IDO1. Interestingly, IDO2 demonstrates behaviour distinct from that of IDO1 in terms of substrate specificity and affinity, such that we have identified tryptophan derivatives that are mutually exclusive as substrates for IDO1 and IDO2. Our results support the idea that the antitumour activity of 1-Me-D-Trp is unlikely to be related with competitive inhibition of IDO2, and also imply that there are subtle differences in active site structure in the two enzymes that may be exploited in the development of specific inhibitors of these enzymes, a route which may prove important in defining their role(s) in cancer.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/química , Triptofano/análogos & derivados , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato/fisiologia , Triptofano/química
10.
J Immunol ; 189(10): 4970-80, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23071286

RESUMO

The pathology associated with Streptococcus pneumoniae meningitis results largely from activation of immune-associated pathways. We systematically investigated the production of IFN subtypes, as well as their influence on pathology, in a mouse model of S. pneumoniae meningitis. Despite the occurrence of a mixed IFN type I/II gene signature, no evidence for production or involvement of type I IFNs in disease progression was found. In contrast, type II IFN (IFN-γ) was strongly induced, and IFN-γ(-/-) mice were significantly protected from severe disease. Using intracellular cytokine staining and targeted cell-depletion approaches, NK cells were found to be the dominant source of IFN-γ. Furthermore, production of IFN-γ was found to be dependent upon ASC and IL-18, indicating that an ASC-dependent inflammasome pathway was responsible for mediating IFN-γ induction. The influence of IFN-γ gene deletion on a range of processes known to be involved in bacterial meningitis pathogenesis was examined. Although neutrophil numbers in the brain were similar in infected wild-type and IFN-γ(-/-) mice, both monocyte recruitment and CCL2 production were less in infected IFN-γ(-/-) mice compared with infected wild-type controls. Additionally, gene expression of NO synthase was strongly diminished in infected IFN-γ(-/-) mice compared with infected controls. Finally, bacterial clearance was enhanced in IFN-γ(-/-) mice, although the underlying mechanism remains unclear. Together, these data suggest that inflammasome-dependent IFN-γ contributes via multiple pathways to pathology during S. pneumoniae meningitis.


Assuntos
Inflamassomos/imunologia , Interferon gama/imunologia , Meningite Pneumocócica/imunologia , Streptococcus pneumoniae/imunologia , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/imunologia , Inflamassomos/genética , Inflamassomos/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-18/genética , Interleucina-18/imunologia , Meningite Pneumocócica/genética , Meningite Pneumocócica/metabolismo , Meningite Pneumocócica/patologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase/biossíntese , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/imunologia
11.
Fungal Genet Biol ; 56: 98-106, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23548750

RESUMO

Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme and is found in animals, fungi and bacteria. In fungi, its primary role is to supply nicotinamide adenine dinucleotide (NAD(+)) via the kynurenine pathway. A number of organisms possess more than one IDO gene, for example, mammals have IDO1 and IDO2 genes. We previously reported that the Pezizomycotina fungi commonly possess three types of IDO genes, IDOα, IDOß and IDOγ. In this study, we surveyed the nature of IDO genes from Basidiomycota fungi, which are categorized into three subphyla (Agaricomycotina, Pucciniomycotina and Ustilaginomycotina). The Agaricomycotina fungi generally have three types of IDO genes (IDOa, IDOb and IDOc), which are distinct from Pezizomycotina three isozymes. Pucciniomycotina and Ustilaginomycotina species possess two types of IDO; one forms a monophyletic clade with Agaricomycotina IDOs in the phylogenetic tree, these IDOs are referred to as "typical Basidiomycota IDOs". The other is IDOγ, which showed more than 40% identity with Pezizomycotina and ciliate IDOγ. We previously demonstrated that IDO2 in mammals and IDOγ in Perzizomycotina fungi have much lower catalytic efficiencies in an in vitro assay, compared with the other IDO isoforms found in the respective species. We have developed a functional assay to determine whether particular IDO enzymes have sufficient enzymatic activity to rescue a yeast strain where IDO-deletion has rendered it auxotrophic for nicotinic acid. IDOα and IDOß showed comparable catalytic efficiency, both of them could function in the Pezizomycotina fungal L-Trp metabolism. The catalytic efficiency and functional capacity of the Basidiomycota IDOa and IDOb were similar to Pezizomycotina IDOα/IDOß. We found that Basidiomycota IDOc could not rescue the nicotinic acid auxotroph, similar to other IDO enzymes with low catalytic efficiency (mammalian IDO2 and most fungal IDOγ). Our study suggests that some fungal IDO enzymes function in tryptophan metabolism and NAD(+) supply. In contrast, other IDO enzymes do not possess sufficient Trp-metabolising capacity to supply NAD(+). Although the role of these low catalytic efficiency IDOs is not clear, it is interesting to note that IDO enzymes possessing these characteristics have evolved across different kingdoms.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/genética , Sequência Conservada , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Evolução Molecular , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
12.
Amino Acids ; 45(6): 1319-29, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24105077

RESUMO

The kynurenine pathway is the major route for the oxidative degradation of the amino acid tryptophan. Activity of the pathway is involved in several disease conditions, both in the periphery and the central nervous system, including cancer, inflammatory disorders, neurological conditions, psychiatric disorders and neurodegenerative diseases. Three enzymes are now known to catalyze the first and rate-limiting step in the catabolism of tryptophan along this pathway: tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO, subsequently named IDO1), both of which have been extensively studied, and a third enzyme, indoleamine 2,3-dioxygenase 2 (IDO2), a relative newcomer to the kynurenine pathway field. The adjuvant chemotherapeutic agent, 1-methyl-D-tryptophan, was intially suggested to target IDO2, implying involvement of IDO2 in tumorigenesis. Subsequently this compound has been suggested to have alternative actions and the physiological and pathophysiological roles of IDO2 are unclear. Targeted genetic interventions and selective inhibitors provide approaches for investigating the biology of IDO2. This review focuses on the current knowledge of IDO2 biology and discusses tools that will assist in further characterizing the enzymes of the kynurenine pathway.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Animais , Doença , Saúde , Humanos
13.
Bioorg Med Chem Lett ; 22(24): 7641-6, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23122865

RESUMO

The kynurenine pathway is responsible for the breakdown of the majority of the essential amino acid, tryptophan (Trp). The first and rate-limiting step of the kynurenine pathway can be independently catalysed by tryptophan 2,3-dioxygenase (Tdo2), indoleamine 2,3-dioxygenase 1 (Ido1) or indoleamine 2,3-dioxygenase 2 (Ido2). Tdo2 or Ido1 enzymatic activity has been implicated in a number of actions of the kynurenine pathway, including immune evasion by tumors. IDO2 is expressed in several human pancreatic cancer cell lines, suggesting it also may play a role in tumorigenesis. Although Ido2 was originally suggested to be a target of the chemotherapeutic agent dextro-1-methyl-tryptophan, subsequent studies suggest this compound does not inhibit Ido2 activity. The development of selective Ido2 inhibitors could provide valuable tools for investigating its activity in tumor development and normal physiology. In this study, a library of Food and Drug Administration-approved drugs was screened for inhibition of mouse Ido2 enzymatic activity. A number of candidates were identified and IC(50) values of each compound for Ido1 and Ido2 were estimated. The Ido2 inhibitors were also tested for inhibition of Tdo2 activity. Our results showed that compounds from a class of drugs used to inhibit proton pumps were the most potent and selective Ido2 inhibitors identified in the library screen. These included tenatoprazole, which exhibited an IC(50) value of 1.8µM for Ido2 with no inhibition of Ido1 or Tdo2 activity detected at a concentration of 100µM tenatoprazole. These highly-selective Ido2 inhibitors will be useful for defining the distinct biological roles of the three Trp-catabolizing enzymes.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Infect Immun ; 79(6): 2379-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21422175

RESUMO

MicroRNAs (miRNAs) are posttranscriptional regulatory molecules that have been implicated in the regulation of immune responses, but their role in the immune response to Plasmodium infection is unknown. We studied the expression of selected miRNAs following infection of CBA mice with Plasmodium berghei ANKA (PbA), which causes cerebral malaria (CM), or Plasmodium berghei K173 (PbK), which causes severe malaria but without cerebral complications, termed non-CM. The differential expression profiles of selected miRNAs (let-7i, miR-27a, miR-150, miR-126, miR-210, and miR-155) were analyzed in mouse brain and heart tissue by quantitative reverse transcription-PCR (qRT-PCR). We identified three miRNAs that were differentially expressed in the brain of PbA-infected CBA mice: let7i, miR-27a, and miR-150. In contrast, no miRNA changes were detected in the heart, an organ with no known pathology during acute malaria. To investigate the involvement of let-7i, miR-27a, and miR-150 in CM-resistant mice, we assessed the expression levels in gamma interferon knockout (IFN-γ(-/-)) mice on a C57BL/6 genetic background. The expression of let-7i, miR-27a, and miR-150 was unchanged in both wild-type (WT) and IFN-γ(-/-) mice following infection. Overexpression of these three miRNAs during PbA, but not PbK, infection in WT mice may be critical for the triggering of the neurological syndrome via regulation of their potential downstream targets. Our data suggest that in the CBA mouse at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.


Assuntos
Malária Cerebral/genética , MicroRNAs/biossíntese , Plasmodium berghei/genética , Animais , Encéfalo/metabolismo , Encéfalo/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , MicroRNAs/genética , Miocárdio/metabolismo , Reação em Cadeia da Polimerase
15.
J Mol Evol ; 72(2): 160-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21170645

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes. Mammalian IDO expression is induced by cytokines and has antimicrobial and immunomodulatory effects. A major role of mammalian TDO is to supply nicotinamide adenine dinucleotide (NAD(+)). In fungi, the IDO homologue is thought to be expressed constitutively and supply NAD(+), as TDO is absent from their genomes. Here, we reveal the distribution of IDO genes among fungal species and characterize their enzymatic activity. The yeast, Saccharomyces cerevisiae has only one IDO gene, whereas the koji-mold, Aspergillus oryzae has two genes, IDOα and IDOß. The A. oryzae IDOα showed more similar enzymatic properties to those of S. cerevisiae IDO than IDOß, suggesting that the A. oryzae IDOα is a functional homologue of the S. cerevisiae IDO. From the IDOß gene, two isoforms, IDOß and IDOß(+) could be generated by alternative splicing. The latter contained a 17 amino acids insertion which were encoded by the first intron of IDOß gene. In comparison to IDOß(+), bacterially expressed IDOß showed much lower K(m) value and more than five-times faster V(max) value, resulting in 85 times higher catalytic efficiency; i.e., the removal of the domain encoded by the first intron from IDOß(+) increases its enzymatic activity drastically. This might be a unique regulation mechanism of the L-Trp metabolism in the A. oryzae. The levo-1-methyl tryptophan (L-1MT) is a good inhibitor of both IDO1 and IDO2. However, the activity of fungal IDOs tested was not inhibited at all by L-1MT.


Assuntos
Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Aspergillus oryzae/enzimologia , Clonagem Molecular , Evolução Molecular , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinética , Funções Verossimilhança , Camundongos , Filogenia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Triptofano/metabolismo
16.
Amino Acids ; 36(1): 99-106, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18274832

RESUMO

The hemoprotein indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in the most significant pathway for mammalian tryptophan metabolism. It has received considerable attention in recent years, particularly due to its dual role in immunity and the pathogenesis of many diseases. Reported here are differences and similarities between biochemical behaviour and structural features of recombinant human IDO and recombinant mouse IDO. Significant differences were observed in the conversion of substrates and pH stability. Differences in inhibitor potency and thermal stability were also noted. Secondary structural features were broadly similar but variation between species was apparent, particularly in the alpha-helix portion of the enzymes. With mouse models substituting for human diseases, the differences between mouse and human IDO must be recognised before applying experimental findings from one system to the next.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Estabilidade Enzimática , Humanos , Concentração de Íons de Hidrogênio , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/isolamento & purificação , Cinética , Cinurenina/química , Cinurenina/metabolismo , Camundongos , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Temperatura
17.
Infect Immun ; 76(5): 1812-24, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18299338

RESUMO

Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. We examined global gene expression patterns during fatal murine CM (FMCM) and noncerebral malaria (NCM) by microarray analysis. There was differential expression of a number of genes, including some not yet characterized in the pathogenesis of FMCM. Some gene induction was observed during Plasmodium berghei infection regardless of the development of CM, and there was a predominance of genes linked to interferon responses, even in NCM. However, upon real-time PCR validation and quantitation, these genes were much more highly expressed in FMCM than in NCM. The observed changes included genes belonging to pathways such as interferon signaling, major histocompatibility complex processing and presentation, apoptosis, and immunomodulatory and antimicrobial processes. We further characterized differentially expressed genes by examining the cellular source of their expression as well as their temporal expression patterns during the course of malaria infection. These data identify a number of novel genes that represent interesting candidates for further investigation in FMCM.


Assuntos
Encéfalo/imunologia , Encéfalo/parasitologia , Interferons/biossíntese , Malária Cerebral/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos CBA , Plasmodium berghei/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Gene ; 396(1): 203-13, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17499941

RESUMO

Indoleamine 2,3-dioxygenase (INDO) and tryptophan 2,3-dioxygenase (TDO) each catalyze the first step in the kynurenine pathway of tryptophan metabolism. We describe the discovery of another enzyme with this activity, indoleamine 2,3-dioxygenase-like protein (INDOL1), which is closely related to INDO and is expressed in mice and humans. The corresponding genes have a similar genomic structure and are situated adjacent to each other on human and mouse chromosome 8. They are likely to have arisen by gene duplication before the origin of the tetrapods. The expression of INDOL1 is highest in the mouse kidney, followed by epididymis, and liver. Expression of mouse INDOL1 was further localized to the tubular cells in the kidney and the spermatozoa. INDOL1 was assigned its name because of its structural similarity to INDO. We demonstrate that INDOL1 catalyses the conversion of tryptophan to kynurenine therefore a more appropriate nomenclature for the enzymes might be INDO-1 and INDO-2, or the more commonly-used abbreviations, IDO-1 and IDO-2. Although the two proteins have similar enzymatic activities, their different expression patterns within tissues and during malaria infection, suggests a distinct role for each protein. This identification of INDOL1 may help to explain the regulation of the diversity of physiological and patho-physiological processes in which the kynurenine pathway is involved.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Masculino , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
19.
Microbes Infect ; 19(7-8): 413-421, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28438705

RESUMO

Streptococcus pneumoniae (S. pneumoniae) meningitis causes debilitating neurological symptoms and acute fatalities in patients, and long-term neurological sequelae in some survivors. Current vaccines do not protect against all 94 known S. pneumoniae capsular serotypes, many of which are capable of causing pneumococcal meningitis (PM). We here compare the pathogenic outcomes of two clinically virulent isolates of S. pneumoniae, serotype 3 strain WU2 and serotype 4 strain TIGR4, in a murine model of PM. At an identical infectious dosage of 103 CFU administered via the intracerebroventricular route, significantly greater mortality, interleukin (IL)1ß and IL6 production, and blood-brain barrier dysfunction occurred in TIGR4-induced PM compared to PM caused by WU2. Higher bacterial counts in the cerebrospinal fluid and nitrite/nitrate in serum were observed 40 h post inoculation with TIGR4 compared to mice infected with WU2. Similar to our previous findings in WU2 PM, interferon-γ was an essential driver of the pathogenesis of TIGR4 PM, suggesting that this cytokine may be a common pathogenic agent across a range of pneumococcal meningitides and, thus, a potential therapeutic target for intervention.


Assuntos
Interferon gama/metabolismo , Meningite Pneumocócica/microbiologia , Meningite Pneumocócica/patologia , Streptococcus pneumoniae/patogenicidade , Animais , Carga Bacteriana , Barreira Hematoencefálica/fisiopatologia , Líquido Cefalorraquidiano/microbiologia , Modelos Animais de Doenças , Feminino , Interleucina-1beta/sangue , Interleucina-6/sangue , Camundongos Endogâmicos C57BL , Nitratos/sangue , Nitritos/sangue , Soro/química , Análise de Sobrevida , Virulência
20.
Int J Tryptophan Res ; 10: 1178646917735098, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051706

RESUMO

Indoleamine 2,3-dioxygenase-2 (IDO2) is 1 of the 3 enzymes that can catalyze the first step in the kynurenine pathway of tryptophan metabolism. Of the 2 other enzymes, tryptophan 2,3-dioxygenase is highly expressed in the liver and has a role in tryptophan homeostasis, whereas indoleamine 2,3-dioxygenase-1 (IDO1) expression is induced by inflammatory stimuli. Indoleamine 2,3-dioxygenase-2 is reportedly expressed comparatively narrow, including in liver, kidney, brain, and in certain immune cell types, and it does not appear to contribute significantly to systemic tryptophan catabolism under normal physiological conditions. Here, we report the identification of an alternative splicing pattern, including the use of an alternative first exon, that is conserved in the mouse Ido1 and Ido2 genes. These findings prompted us to assess IDO2 protein expression and enzymatic activity in tissues. Our analysis, undertaken in Ido2 +/+ and Ido2-/- mice using immunohistochemistry and measurement of tryptophan and kynurenine levels, suggested an even more restricted pattern of tissue expression than previously reported. We found IDO2 protein to be expressed in the liver with a perinuclear/nuclear, rather than cytoplasmic, distribution. Consistent with earlier reports, we found Ido2 -/- mice to be phenotypically similar to their Ido2+/+ counterparts regarding levels of tryptophan and kynurenine in the plasma and liver. Our findings suggest a specialized function or regulatory role for IDO2 associated with its particular subcellular localization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA