Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Cell Proteomics ; 23(3): 100735, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342409

RESUMO

Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.


Assuntos
Desmossomos , Placofilinas , Animais , Cães , Desmossomos/metabolismo , Membrana Celular/metabolismo , Placofilinas/metabolismo , Células Madin Darby de Rim Canino , Transdução de Sinais , Adesão Celular , Desmoplaquinas/metabolismo
2.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635908

RESUMO

Desmosomes, strong cell-cell junctions of epithelia and cardiac muscle, link intermediate filaments to cell membranes and mechanically integrate cells across tissues, dissipating mechanical stress. They comprise five major protein classes - desmocollins and desmogleins (the desmosomal cadherins), plakoglobin, plakophilins and desmoplakin - whose individual contribution to the structure and turnover of desmosomes is poorly understood. Using live-cell imaging together with fluorescence recovery after photobleaching (FRAP) and fluorescence loss and localisation after photobleaching (FLAP), we show that desmosomes consist of two contrasting protein moieties or modules: a very stable moiety of desmosomal cadherins, desmoplakin and plakoglobin, and a highly mobile plakophilin (Pkp2a). As desmosomes mature from Ca2+ dependence to Ca2+-independent hyper-adhesion, their stability increases, but Pkp2a remains highly mobile. We show that desmosome downregulation during growth-factor-induced cell scattering proceeds by internalisation of whole desmosomes, which still retain a stable moiety and highly mobile Pkp2a. This molecular mobility of Pkp2a suggests a transient and probably regulatory role for Pkp2a in desmosomes. This article has an associated First Person interview with the first author of the paper.


Assuntos
Desmossomos , Placofilinas , Caderinas , Membrana Celular , Desmogleínas , Desmoplaquinas/genética , Humanos , Placofilinas/genética , gama Catenina
3.
Exp Cell Res ; 407(2): 112805, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487728

RESUMO

Integrin receptors are transmembrane proteins that bind to the extracellular matrix (ECM). In most animal cell types integrins cluster together with adaptor proteins at focal adhesions that sense and respond to external mechanical signals. In the central nervous system (CNS), ECM proteins are sparsely distributed, the tissue is comparatively soft and neurons do not form focal adhesions. Thus, how neurons sense tissue stiffness is currently poorly understood. Here, we found that integrins and the integrin-associated proteins talin and focal adhesion kinase (FAK) are required for the outgrowth of neuronal processes. Vinculin, however, whilst not required for neurite outgrowth was a key regulator of integrin-mediated mechanosensing of neurons. During growth, growth cones of axons of CNS derived cells exerted dynamic stresses of around 10-12 Pa on their environment, and axons grew significantly longer on soft (0.4 kPa) compared to stiff (8 kPa) substrates. Depletion of vinculin blocked this ability of growth cones to distinguish between soft and stiff substrates. These data suggest that vinculin in neurons acts as a key mechanosensor, involved in the regulation of growth cone motility.


Assuntos
Axônios/fisiologia , Matriz Extracelular/metabolismo , Mecanotransdução Celular , Crescimento Neuronal , Neurônios/citologia , Vinculina/metabolismo , Animais , Adesão Celular , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais , Integrinas/genética , Integrinas/metabolismo , Camundongos , Neurônios/metabolismo , Vinculina/genética
4.
J Cell Sci ; 130(14): 2277-2291, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576970

RESUMO

Low-intensity pulsed ultrasound (LIPUS) is a therapy used clinically to promote healing. Using live-cell imaging we show that LIPUS stimulation, acting through integrin-mediated cell-matrix adhesions, rapidly induces Rac1 activation associated with dramatic actin cytoskeleton rearrangements. Our study demonstrates that the mechanosensitive focal adhesion (FA) protein vinculin, and both focal adhesion kinase (FAK, also known as PTK2) and Rab5 (both the Rab5a and Rab5b isoforms) have key roles in regulating these effects. Inhibiting the link of vinculin to the actin-cytoskeleton abolished LIPUS sensing. We show that this vinculin-mediated link was not only critical for Rac1 induction and actin rearrangements, but was also important for the induction of a Rab5-dependent increase in the number of early endosomes. Expression of dominant-negative Rab5, or inhibition of endocytosis with dynasore, also blocked LIPUS-induced Rac1 signalling events. Taken together, our data show that LIPUS is sensed by cell matrix adhesions through vinculin, which in turn modulates a Rab5-Rac1 pathway to control ultrasound-mediated endocytosis and cell motility. Finally, we demonstrate that a similar FAK-Rab5-Rac1 pathway acts to control cell spreading upon fibronectin.


Assuntos
Movimento Celular/efeitos da radiação , Neuropeptídeos/metabolismo , Vinculina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Células 3T3 , Actinas/metabolismo , Animais , Endocitose/fisiologia , Endocitose/efeitos da radiação , Ativação Enzimática/efeitos da radiação , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Ondas Ultrassônicas , Proteínas rab5 de Ligação ao GTP/metabolismo
5.
J Cell Sci ; 130(9): 1612-1624, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28302906

RESUMO

Focal adhesions (FAs) are macromolecular complexes that regulate cell adhesion and mechanotransduction. By performing fluorescence recovery after photobleaching (FRAP) and fluorescence loss after photoactivation (FLAP) experiments, we found that the mobility of core FA proteins correlates with their function. Structural proteins such as tensin, talin and vinculin are significantly less mobile in FAs than signaling proteins such as FAK (also known as PTK2) and paxillin. The mobilities of the structural proteins are directly influenced by substrate stiffness, suggesting that they are involved in sensing the rigidity of the extracellular environment. The turnover rates of FAK and paxillin, as well as kindlin2 (also known as FERMT2), are not influenced by substrate stiffness. By using specific Src and FAK inhibitors, we reveal that force-sensing by vinculin occurs independently of FAK and paxillin phosphorylation. However, their phosphorylation is required for downstream Rac1-driven cellular processes, such as protrusion and cell migration. Overall, we show that the FA is composed of different functional modules that separately control mechanosensing and the cellular mechano-response.


Assuntos
Adesões Focais/metabolismo , Mecanotransdução Celular , Animais , Movimento Celular , Matriz Extracelular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Camundongos , Modelos Biológicos , Células NIH 3T3 , Paxilina/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Transporte Proteico , Pseudópodes/metabolismo , Transdução de Sinais , Vinculina/metabolismo , Quinases da Família src/metabolismo
6.
Kidney Int ; 93(3): 643-655, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29241625

RESUMO

Cell-matrix interactions and podocyte intercellular junctions are key for maintaining the glomerular filtration barrier. Vinculin, a cytoplasmic protein, couples actin filaments to integrin-mediated cell-matrix adhesions and to cadherin-based intercellular junctions. Here, we examined the role of vinculin in podocytes by the generation of a podocyte-specific knockout mouse. Mice lacking podocyte vinculin had increased albuminuria and foot process effacement following injury in vivo. Analysis of primary podocytes isolated from the mutant mice revealed defects in cell protrusions, altered focal adhesion size and signaling, as well as impaired cell migration. Furthermore, we found a marked mislocalization of the intercellular junction protein zonula occludens-1. In kidney sections from patients with focal segmental glomerulosclerosis, minimal change disease and membranous nephropathy, we observed dramatic differences in the expression levels and localization of vinculin. Thus, our results suggest that vinculin is necessary to maintain the integrity of the glomerular filtration barrier by modulating podocyte foot processes and stabilizing intercellular junctions.


Assuntos
Glomerulonefrite Membranosa/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Nefrose Lipoide/metabolismo , Podócitos/metabolismo , Vinculina/metabolismo , Albuminúria/genética , Albuminúria/metabolismo , Animais , Movimento Celular , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/patologia , Células Cultivadas , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Adesões Focais/patologia , Glomerulonefrite Membranosa/patologia , Glomerulosclerose Segmentar e Focal/patologia , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrose Lipoide/patologia , Fosforilação , Podócitos/patologia , Vinculina/deficiência , Vinculina/genética , Proteína da Zônula de Oclusão-1/metabolismo
7.
Exp Cell Res ; 343(1): 21-27, 2016 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-26607713

RESUMO

External forces play a key role in shaping development and normal physiology. Aberrant responses to forces, or changes in the nature of such forces, are implicated in a variety of diseases. Cells contain several types of adhesions, linking them to their external environment. It is through these adhesions that forces are both sensed (from the outside inwards) and applied (from inside to out). Furthermore, several adhesion-based proteins are sensitive to changes in intracellular forces, utilising them for activation and regulation. Here, we outline how vinculin, a key component of integrin-mediated adhesions linking the actin cytoskeleton to the extracellular matrix (ECM), is regulated by force and acts as force transducing protein. We discuss the role of vinculin in vivo and its place in health and disease; summarise the proposed mechanisms by which vinculin is recruited to and activated at integrin-ECM adhesions; and discuss recent findings that place vinculin as the major force sensing and transmitting component of cell-matrix adhesion complexes. Finally, we discuss the role of vinculin in regulating the cellular responses to both the physical properties of the external environment and to externally applied physical stimuli.


Assuntos
Adesão Celular/fisiologia , Integrinas/fisiologia , Vinculina/metabolismo , Matriz Extracelular/fisiologia , Humanos , Modelos Biológicos , Estresse Mecânico
8.
J Cell Sci ; 127(Pt 12): 2672-82, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706950

RESUMO

Crosstalk between the microtubule (MT) and actin cytoskeletons is fundamental to many cellular processes including cell polarisation and cell motility. Previous work has shown that members of the growth-arrest-specific 2 (GAS2) family mediate the crosstalk between filamentous actin (F-actin) and MTs, but the molecular basis of this process remained unclear. By using fluorescence microscopy, we demonstrate that three members of this family, GAS2-like 1, GAS2-like 2 and GAS2-like 3 (G2L1, G2L2 and G2L3, also known as GAS2L1, GAS2L2 and GAS2L3, respectively) are differentially involved in mediating the crosstalk between F-actin and MTs. Although all localise to actin and MTs, only the exogenous expression of G2L1 and G2L2 influenced MT stability, dynamics and guidance along actin stress fibres. Biochemical analysis and live-cell imaging revealed that their functions are largely due to the association of these proteins with MT plus-end-binding proteins that bind to SxIP or SxLP motifs located at G2L C-termini. Our findings lead to a model in which end-binding (EB) proteins play a key role in mediating actin-MT crosstalk.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Fibras de Estresse/metabolismo , Animais , Células CHO , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Sequência Conservada , Cricetinae , Cricetulus , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Células NIH 3T3 , Ligação Proteica , Sinais Direcionadores de Proteínas , Transporte Proteico
9.
Biophys J ; 107(7): 1502-12, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296302

RESUMO

Knowledge of how the elastic stiffness of a cell affects its communication with its environment is of fundamental importance for the understanding of tissue integrity in health and disease. For stiffness measurements, it has been customary to quote a single parameter quantity, e.g., Young's modulus, rather than the minimum of two terms of the stiffness tensor required by elasticity theory. In this study, we use two independent methods (acoustic microscopy and atomic force microscopy nanoindentation) to characterize the elastic properties of a cell and thus determine two independent elastic constants. This allows us to explore in detail how the mechanical properties of cells change in response to signaling pathways that are known to regulate the cell's cytoskeleton. In particular, we demonstrate that altering the tensioning of actin filaments in NIH3T3 cells has a strong influence on the cell's shear modulus but leaves its bulk modulus unchanged. In contrast, altering the polymerization state of actin filaments influences bulk and shear modulus in a similar manner. In addition, we can use the data to directly determine the Poisson ratio of a cell and show that in all cases studied, it is less than, but very close to, 0.5 in value.


Assuntos
Acústica , Células/química , Células/ultraestrutura , Módulo de Elasticidade , Microscopia de Força Atômica , Actinas/química , Actinas/metabolismo , Animais , Sobrevivência Celular , Camundongos , Células NIH 3T3 , Multimerização Proteica , Estrutura Quaternária de Proteína , Resistência ao Cisalhamento
10.
J Biol Chem ; 288(12): 8238-8249, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23389036

RESUMO

Talin activates integrins, couples them to F-actin, and recruits vinculin to focal adhesions (FAs). Here, we report the structural characterization of the talin rod: 13 helical bundles (R1-R13) organized into a compact cluster of four-helix bundles (R2-R4) within a linear chain of five-helix bundles. Nine of the bundles contain vinculin-binding sites (VBS); R2R3 are atypical, with each containing two VBS. Talin R2R3 also binds synergistically to RIAM, a Rap1 effector involved in integrin activation. Biochemical and structural data show that vinculin and RIAM binding to R2R3 is mutually exclusive. Moreover, vinculin binding requires domain unfolding, whereas RIAM binds the folded R2R3 double domain. In cells, RIAM is enriched in nascent adhesions at the leading edge whereas vinculin is enriched in FAs. We propose a model in which RIAM binding to R2R3 initially recruits talin to membranes where it activates integrins. As talin engages F-actin, force exerted on R2R3 disrupts RIAM binding and exposes the VBS, which recruit vinculin to stabilize the complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Adesões Focais/metabolismo , Proteínas de Membrana/química , Talina/química , Vinculina/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Cristalografia por Raios X , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Talina/metabolismo , Vinculina/metabolismo
11.
J Neurosci ; 32(27): 9143-58, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22764224

RESUMO

The correct outgrowth of axons is essential for the development and regeneration of nervous systems. Axon growth is primarily driven by microtubules. Key regulators of microtubules in this context are the spectraplakins, a family of evolutionarily conserved actin-microtubule linkers. Loss of function of the mouse spectraplakin ACF7 or of its close Drosophila homolog Short stop/Shot similarly cause severe axon shortening and microtubule disorganization. How spectraplakins perform these functions is not known. Here we show that axonal growth-promoting roles of Shot require interaction with EB1 (End binding protein) at polymerizing plus ends of microtubules. We show that binding of Shot to EB1 requires SxIP motifs in Shot's C-terminal tail (Ctail), mutations of these motifs abolish Shot functions in axonal growth, loss of EB1 function phenocopies Shot loss, and genetic interaction studies reveal strong functional links between Shot and EB1 in axonal growth and microtubule organization. In addition, we report that Shot localizes along microtubule shafts and stabilizes them against pharmacologically induced depolymerization. This function is EB1-independent but requires net positive charges within Ctail which essentially contribute to the microtubule shaft association of Shot. Therefore, spectraplakins are true members of two important classes of neuronal microtubule regulating proteins: +TIPs (tip interacting proteins; plus end regulators) and structural MAPs (microtubule-associated proteins). From our data we deduce a model that relates the different features of the spectraplakin C terminus to the two functions of Shot during axonal growth.


Assuntos
Actinas/fisiologia , Axônios/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Proteínas dos Microfilamentos/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Actinas/genética , Motivos de Aminoácidos/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/deficiência , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes/métodos , Cones de Crescimento/fisiologia , Masculino , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/deficiência , Mutação , Células NIH 3T3 , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/fisiologia , Cultura Primária de Células
12.
Open Biol ; 13(6): 230058, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339751

RESUMO

Adhesion between cells and the extracellular matrix is mediated by heterodimeric (αß) integrin receptors that are intracellularly linked to the contractile actomyosin machinery. One of the proteins that control this link is talin, which organizes cytosolic signalling proteins into discrete complexes on ß-integrin tails referred to as focal adhesions (FAs). The adapter protein KANK1 binds to talin in the region of FAs known as the adhesion belt. Here, we adapted a non-covalent crystallographic chaperone to resolve the talin-KANK1 complex. This structure revealed that the talin binding KN region of KANK1 contains a novel motif where a ß-hairpin stabilizes the α-helical region, explaining both its specific interaction with talin R7 and high affinity. Single point mutants in KANK1 identified from the structure abolished the interaction and enabled us to examine KANK1 enrichment in the adhesion belt. Strikingly, in cells expressing a constitutively active form of vinculin that keeps the FA structure intact even in the presence of myosin inhibitors, KANK1 localizes throughout the entire FA structure even when actomyosin tension is released. We propose a model whereby actomyosin forces on talin eliminate KANK1 from talin binding in the centre of FAs while retaining it at the adhesion periphery.


Assuntos
Actinas , Adesões Focais , Actinas/metabolismo , Talina/genética , Talina/análise , Talina/química , Actomiosina/metabolismo , Adesão Celular , Citoesqueleto/metabolismo , Vinculina/genética , Vinculina/análise , Vinculina/metabolismo , Integrinas/metabolismo , Microtúbulos/metabolismo
13.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36410791

RESUMO

Modulation of integrin function is required in many physiological and pathological settings, such as angiogenesis and cancer. Integrin allosteric changes, clustering, and trafficking cooperate to regulate cell adhesion and motility on extracellular matrix proteins via mechanisms that are partly defined. By exploiting four monoclonal antibodies recognizing distinct conformational epitopes, we show that in endothelial cells (ECs), the extracellular ßI domain, but not the hybrid or I-EGF2 domain of active ß1 integrins, promotes their FAK-regulated clustering into tensin 1-containing fibrillar adhesions and impairs their endocytosis. In this regard, the ßI domain-dependent clustering of active ß1 integrins is necessary to favor fibronectin-elicited directional EC motility, which cannot be effectively promoted by ß1 integrin conformational activation alone.


Assuntos
Células Endoteliais , Integrina beta1 , Integrina beta1/metabolismo , Células Endoteliais/metabolismo , Adesão Celular/fisiologia , Integrinas , Análise por Conglomerados
14.
J Biol Chem ; 286(28): 24987-95, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21561867

RESUMO

The microtubule (MT) and actin cytoskeletons are fundamental to cell integrity, because they control a host of cellular activities, including cell division, growth, polarization, and migration. Proteins involved in mediating the cross-talk between MT and actin cytoskeletons are key to many cellular processes and play important physiological roles. We identified a new member of the GAS2 family of MT-actin cross-linking proteins, named G2L3 (GAS2-like 3). We show that GAS2-like 3 is widely conserved throughout evolution and is ubiquitously expressed in human tissues. GAS2-like 3 interacts with filamentous actin and MTs via its single calponin homology type 3 domain and C terminus, respectively. Interestingly, the role of the putative MT-binding GAS2-related domain is to modulate the binding of GAS2-like 3 to both filamentous actin and MTs. This is in contrast to GAS2-related domains found in related proteins, where it functions as a MT-binding domain. Furthermore, we show that tubulin acetylation drives GAS2-like 3 localization to MTs and may provide functional insights into the role of GAS2-like 3.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/genética , Animais , Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Células NIH 3T3 , Especificidade de Órgãos/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína
15.
J Cell Sci ; 123(Pt 22): 3901-12, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20980389

RESUMO

Focal adhesions (FAs) control cell shape and motility, which are important processes that underlie a wide range of physiological functions. FA dynamics is regulated by cytoskeleton, motor proteins and small GTPases. Kinectin is an integral endoplasmic reticulum (ER) membrane protein that extends the ER along microtubules. Here, we investigated the influence of the ER on FA dynamics within the cellular lamella by disrupting the kinectin-kinesin interaction by overexpressing the minimal kinectin-kinesin interaction domain on kinectin in cells. This perturbation resulted in a morphological change to a rounded cell shape and reduced cell spreading and migration. Immunofluorescence and live-cell imaging demonstrated a kinectin-dependent ER extension into the cellular lamella and ER colocalisation with FAs within the cellular lamella. FRAP experiments showed that ER contact with FAs was accompanied with an increase in FA protein recruitment to FAs. Disruption of the kinectin-kinesin interaction caused a reduction in FA protein recruitment to FAs. This suggests that the ER supports FA growth within the cellular lamella. Microtubule targeting to FAs is known to promote adhesion disassembly; however, ER contact increased FA size even in the presence of microtubules. Our results suggest a scenario whereby kinectin-kinesin interaction facilitates ER transport along microtubules to support FA growth.


Assuntos
Retículo Endoplasmático/metabolismo , Adesões Focais/metabolismo , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Movimento Celular/fisiologia , Células HeLa , Humanos , Integrina beta3/metabolismo , Microtúbulos/metabolismo
16.
J Cell Biol ; 177(3): 527-38, 2007 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-17485492

RESUMO

Cell migration in wound healing and disease is critically dependent on integration with the extracellular matrix, but the receptors that couple matrix topography to migratory behavior remain obscure. Using nano-engineered fibronectin surfaces and cell-derived matrices, we identify syndecan-4 as a key signaling receptor determining directional migration. In wild-type fibroblasts, syndecan-4 mediates the matrix-induced protein kinase Calpha (PKCalpha)-dependent activation of Rac1 and localizes Rac1 activity and membrane protrusion to the leading edge of the cell, resulting in persistent migration. In contrast, syndecan-4-null fibroblasts migrate randomly as a result of high delocalized Rac1 activity, whereas cells expressing a syndecan-4 cytodomain mutant deficient in PKCalpha regulation fail to localize active Rac1 to points of matrix engagement and consequently fail to recognize and respond to topographical changes in the matrix.


Assuntos
Movimento Celular , Matriz Extracelular , Fibroblastos/metabolismo , Neuropeptídeos/metabolismo , Proteína Quinase C-alfa/metabolismo , Sindecana-4/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Movimento Celular/genética , Células Cultivadas , Ativação Enzimática/genética , Fibroblastos/citologia , Fibronectinas , Camundongos , Camundongos Knockout , Mutação , Neuropeptídeos/genética , Proteína Quinase C-alfa/deficiência , Estrutura Terciária de Proteína/genética , Sindecana-4/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP
17.
EMBO Rep ; 11(4): 292-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20224579

RESUMO

Focal adhesion (FA) disassembly required for optimal cell migration is mediated by microtubules (MTs); targeting of FAs by MTs coincides with their disassembly. Regrowth of MTs, induced by removal of the MT destabilizer nocodazole, activates the Rho-like GTPase Rac, concomitant with FA disassembly. Here, we show that the Rac guanine nucleotide exchange factor (GEF) Sif and Tiam1-like exchange factor (STEF) is responsible for Rac activation during MT regrowth. Importantly, STEF is required for multiple targeting of FAs by MTs. As a result, FAs in STEF-knockdown cells have a reduced disassembly rate and are consequently enlarged. This leads to reduced speed of migration. Together, these findings suggest a new role for STEF in FA disassembly and cell migration through MT-mediated mechanisms.


Assuntos
Adesões Focais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Microtúbulos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Adesões Focais/efeitos dos fármacos , Adesões Focais/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Microscopia de Fluorescência , Microtúbulos/efeitos dos fármacos , Nocodazol/farmacologia , Interferência de RNA/fisiologia
18.
J Cell Biol ; 221(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36074065

RESUMO

The formation of healthy tissue involves continuous remodeling of the extracellular matrix (ECM). Whilst it is known that this requires integrin-associated cell-ECM adhesion sites (CMAs) and actomyosin-mediated forces, the underlying mechanisms remain unclear. Here, we examine how tensin3 contributes to the formation of fibrillar adhesions (FBs) and fibronectin fibrillogenesis. Using BioID mass spectrometry and a mitochondrial targeting assay, we establish that tensin3 associates with the mechanosensors such as talin and vinculin. We show that the talin R11 rod domain binds directly to a helical motif within the central intrinsically disordered region (IDR) of tensin3, whilst vinculin binds indirectly to tensin3 via talin. Using CRISPR knock-out cells in combination with defined tensin3 mutations, we show (i) that tensin3 is critical for the formation of α5ß1-integrin FBs and for fibronectin fibrillogenesis, and (ii) the talin/tensin3 interaction drives this process, with vinculin acting to potentiate it.


Assuntos
Fibronectinas , Adesões Focais , Talina , Tensinas , Adesão Celular , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Adesões Focais/genética , Adesões Focais/metabolismo , Integrinas/metabolismo , Talina/genética , Talina/metabolismo , Tensinas/genética , Tensinas/metabolismo , Vinculina/genética , Vinculina/metabolismo
19.
J Cell Sci ; 122(Pt 19): 3531-41, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19737819

RESUMO

We studied the role of a class II histone deacetylase, HDAC6, known to function as a potent alpha-tubulin deacetylase, in the regulation of microtubule dynamics. Treatment of cells with the class I and II histone deacetylase inhibitor TSA, as well as the selective HDAC6 inhibitor tubacin, increased microtubule acetylation and significantly reduced velocities of microtubule growth and shrinkage. siRNA-mediated knockdown of HDAC6 also increased microtubule acetylation but, surprisingly, had no effect on microtubule growth velocity. At the same time, HDAC6 knockdown abolished the effect of tubacin on microtubule growth, demonstrating that tubacin influences microtubule dynamics via specific inhibition of HDAC6. Thus, the physical presence of HDAC6 with impaired catalytic activity, rather than tubulin acetylation per se, is the factor responsible for the alteration of microtubule growth velocity in HDAC6 inhibitor-treated cells. In support of this notion, HDAC6 mutants bearing inactivating point mutations in either of the two catalytic domains mimicked the effect of HDAC6 inhibitors on microtubule growth velocity. In addition, HDAC6 was found to be physically associated with the microtubule end-tracking protein EB1 and a dynactin core component, Arp1, both of which accumulate at the tips of growing microtubules. We hypothesize that inhibition of HDAC6 catalytic activity may affect microtubule dynamics by promoting the interaction of HDAC6 with tubulin and/or with other microtubule regulatory proteins.


Assuntos
Regulação para Baixo , Histona Desacetilases/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos , Camundongos , Microtúbulos/genética , Ligação Proteica , Transporte Proteico , Tubulina (Proteína)/genética
20.
J Cell Sci ; 122(Pt 20): 3644-51, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19812308

RESUMO

Mechanical forces play a crucial role in controlling the integrity and functionality of cells and tissues. External forces are sensed by cells and translated into signals that induce various responses. To increase the detailed understanding of these processes, we investigated cell migration and dynamic cellular reorganisation of focal adhesions and cytoskeleton upon application of cyclic stretching forces. Of particular interest was the role of microtubules and GTPase activation in the course of mechanotransduction. We showed that focal adhesions and the actin cytoskeleton undergo dramatic reorganisation perpendicular to the direction of stretching forces even without microtubules. Rather, we found that microtubule orientation is controlled by the actin cytoskeleton. Using biochemical assays and fluorescence resonance energy transfer (FRET) measurements, we revealed that Rac1 and Cdc42 activities did not change upon stretching, whereas overall RhoA activity increased dramatically, but independently of intact microtubules. In conclusion, we demonstrated that key players in force-induced cellular reorganisation are focal-adhesion sliding, RhoA activation and the actomyosin machinery. In contrast to the importance of microtubules in migration, the force-induced cellular reorganisation, including focal-adhesion sliding, is independent of a dynamic microtubule network. Consequently, the elementary molecular mechanism of cellular reorganisation during migration is different to the one in force-induced cell reorganisation.


Assuntos
Polaridade Celular , Adesões Focais/enzimologia , Microtúbulos/enzimologia , Estresse Mecânico , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Movimento Celular , Camundongos , Células NIH 3T3 , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA