Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 152(3): 612-9, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374353

RESUMO

Melanocortin 4 receptors (MC4Rs) in the central nervous system are key regulators of energy and glucose homeostasis. Notably, obese patients with MC4R mutations are hyperinsulinemic and resistant to obesity-induced hypertension. Although these effects are probably dependent upon the activity of the autonomic nervous system, the cellular effects of MC4Rs on parasympathetic and sympathetic neurons remain undefined. Here, we show that MC4R agonists inhibit parasympathetic preganglionic neurons in the brainstem. In contrast, MC4R agonists activate sympathetic preganglionic neurons in the spinal cord. Deletion of MC4Rs in cholinergic neurons resulted in elevated levels of insulin. Furthermore, re-expression of MC4Rs specifically in cholinergic neurons (including sympathetic preganglionic neurons) restores obesity-associated hypertension in MC4R null mice. These findings provide a cellular correlate of the autonomic side effects associated with MC4R agonists and demonstrate a role for MC4Rs expressed in cholinergic neurons in the regulation of insulin levels and in the development of obesity-induced hypertension.


Assuntos
Tronco Encefálico/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Pressão Sanguínea , Tronco Encefálico/citologia , Neurônios Colinérgicos/metabolismo , AMP Cíclico/metabolismo , Fenômenos Eletrofisiológicos , Humanos , Canais KATP/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/fisiopatologia , Sistema Nervoso Parassimpático/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Medula Espinal/metabolismo , Sistema Nervoso Simpático/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(43): 12298-12303, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791019

RESUMO

Melanocortin-4 receptor (Mc4r)-expressing neurons in the autonomic nervous system, particularly in the paraventricular nucleus of the hypothalamus (PVH), play an essential role in blood pressure (BP) control. Mc4r-deficient (Mc4rKO) mice are severely obese but lack obesity-related hypertension; they also show a reduced pressor response to salt loading. We have previously reported that lean juvenile offspring born to diet-induced obese rats (OffOb) exhibit sympathetic-mediated hypertension, and we proposed a role for postnatally raised leptin in its etiology. Here, we test the hypothesis that neonatal hyperleptinemia due to maternal obesity induces persistent changes in the central melanocortin system, thereby contributing to offspring hypertension. Working on the OffOb paradigm in both sexes and using transgenic technology to restore Mc4r in the PVH of Mc4rKO (Mc4rPVH) mice, we have now shown that these mice develop higher BP than Mc4rKO or WT mice. We have also found that experimental hyperleptinemia induced in the neonatal period in Mc4rPVH and WT mice, but not in the Mc4rKO mice, leads to heightened BP and severe renal dysfunction. Thus, Mc4r in the PVH appears to be required for early-life programming of hypertension arising from either maternal obesity or neonatal hyperleptinemia. Early-life exposure of the PVH to maternal obesity through postnatal elevation of leptin may have long-term consequences for cardiovascular health.


Assuntos
Hipertensão/genética , Leptina/metabolismo , Obesidade/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Receptor Tipo 4 de Melanocortina/genética , Animais , Pressão Sanguínea/genética , Dieta/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Leptina/genética , Masculino , Relações Materno-Fetais/fisiologia , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Obesidade/complicações , Obesidade/fisiopatologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/patologia
3.
Mol Cell Neurosci ; 68: 258-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26292267

RESUMO

The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1-3 gene products). There is a wealth of data on expression of Gal1-3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs).


Assuntos
Neurônios/fisiologia , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Gânglios Espinais/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Galanina/genética , Receptor Tipo 2 de Galanina/genética , Medula Espinal/metabolismo , Proteína Vermelha Fluorescente
4.
Nature ; 449(7159): 228-32, 2007 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-17728716

RESUMO

A subset of neurons in the brain, known as 'glucose-excited' neurons, depolarize and increase their firing rate in response to increases in extracellular glucose. Similar to insulin secretion by pancreatic beta-cells, glucose excitation of neurons is driven by ATP-mediated closure of ATP-sensitive potassium (K(ATP)) channels. Although beta-cell-like glucose sensing in neurons is well established, its physiological relevance and contribution to disease states such as type 2 diabetes remain unknown. To address these issues, we disrupted glucose sensing in glucose-excited pro-opiomelanocortin (POMC) neurons via transgenic expression of a mutant Kir6.2 subunit (encoded by the Kcnj11 gene) that prevents ATP-mediated closure of K(ATP) channels. Here we show that this genetic manipulation impaired the whole-body response to a systemic glucose load, demonstrating a role for glucose sensing by POMC neurons in the overall physiological control of blood glucose. We also found that glucose sensing by POMC neurons became defective in obese mice on a high-fat diet, suggesting that loss of glucose sensing by neurons has a role in the development of type 2 diabetes. The mechanism for obesity-induced loss of glucose sensing in POMC neurons involves uncoupling protein 2 (UCP2), a mitochondrial protein that impairs glucose-stimulated ATP production. UCP2 negatively regulates glucose sensing in POMC neurons. We found that genetic deletion of Ucp2 prevents obesity-induced loss of glucose sensing, and that acute pharmacological inhibition of UCP2 reverses loss of glucose sensing. We conclude that obesity-induced, UCP2-mediated loss of glucose sensing in glucose-excited neurons might have a pathogenic role in the development of type 2 diabetes.


Assuntos
Glucose/metabolismo , Homeostase , Neurônios/metabolismo , Obesidade/fisiopatologia , Pró-Opiomelanocortina/metabolismo , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Canais Iônicos/metabolismo , Glicosídeos Iridoides , Iridoides/farmacologia , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Obesidade/induzido quimicamente , Obesidade/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteína Desacopladora 2
5.
J Neurosci ; 30(44): 14630-4, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048120

RESUMO

D-Fenfluramine (D-Fen) increases serotonin (5-HT) content in the synaptic cleft and exerts anorexigenic effects in animals and humans. However, the neural circuits that mediate these effects are not fully identified. To address this issue, we assessed the efficacy of D-Fen-induced hypophagia in mouse models with manipulations of several genes in selective populations of neurons. Expectedly, we found that global deletion of 5-HT 2C receptors (5-HT(2C)Rs) significantly attenuated D-Fen-induced anorexia. These anorexigenic effects were restored in mice with 5-HT(2C)Rs expressed only in pro-opiomelanocortin (POMC) neurons. Further, we found that deletion of melanocortin 4 receptors (MC4Rs), a downstream target of POMC neurons, abolished anorexigenic effects of D-Fen. Reexpression of MC4Rs only in SIM1 neurons in the hypothalamic paraventricular nucleus and neurons in the amygdala was sufficient to restore the hypophagic property of D-Fen. Thus, our results identify a neurochemically defined neural circuit through which D-Fen influences appetite and thereby indicate that this 5-HT(2C)R/POMC-MC4R/SIM1 circuit may yield a more refined target to exploit for weight loss.


Assuntos
Anorexia/metabolismo , Anorexia/fisiopatologia , Fenfluramina/farmacologia , Melanocortinas/fisiologia , Serotonina/fisiologia , Animais , Anorexia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Pró-Opiomelanocortina/fisiologia , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Receptor 5-HT2C de Serotonina/deficiência , Receptor 5-HT2C de Serotonina/genética , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Redução de Peso/genética , Redução de Peso/fisiologia
6.
Cell Metab ; 4(2): 123-32, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16890540

RESUMO

Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.


Assuntos
Gorduras na Dieta/farmacologia , Glucose/metabolismo , Homeostase , Leptina/farmacologia , Pró-Opiomelanocortina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Células Cultivadas , Fígado Gorduroso/prevenção & controle , Camundongos , Camundongos Knockout , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Redução de Peso
7.
J Clin Invest ; 118(5): 1796-805, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18382766

RESUMO

Normal food intake and body weight homeostasis require the direct action of leptin on hypothalamic proopiomelanocortin (POMC) neurons. It has been proposed that leptin action requires PI3K activity. We therefore assessed the contribution of PI3K signaling to leptin's effects on POMC neurons and organismal energy balance. Leptin caused a rapid depolarization of POMC neurons and an increase in action potential frequency in patch-clamp recordings of hypothalamic slices. Pharmacologic inhibition of PI3K prevented this depolarization and increased POMC firing rate, indicating a PI3K-dependent mechanism of leptin action. Mice with genetically disrupted PI3K signaling in POMC cells failed to undergo POMC depolarization or increased firing frequency in response to leptin. Insulin's ability to hyperpolarize POMC neurons was also abolished in these mice. Moreover, targeted disruption of PI3K blunted the suppression of feeding elicited by central leptin administration. Despite these differences, mice with impaired PI3K signaling in POMC neurons exhibited normal long-term body weight regulation. Collectively, these results suggest that PI3K signaling in POMC neurons is essential for leptin-induced activation and insulin-induced inhibition of POMC cells and for the acute suppression of food intake elicited by leptin, but is not a major contributor to the regulation of long-term organismal energy homeostasis.


Assuntos
Hipotálamo/citologia , Leptina/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/fisiologia , Animais , Peso Corporal , Ingestão de Alimentos , Metabolismo Energético , Homeostase , Humanos , Camundongos , Camundongos Knockout , Neurônios/citologia , Técnicas de Patch-Clamp
8.
EMBO Rep ; 10(10): 1175-81, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19713961

RESUMO

Within the central nervous system (CNS), the hypothalamus senses and integrates information on the nutrient state of the body. However, the molecular mechanisms translating nutrient sensing into changes in gene expression and, ultimately, nutrient intake remain unclear. A crucial function for the cyclic AMP-response element binding protein (CREB) co-activator CREB-regulated transcription co-activator 2 (CRTC2) in maintaining glucose homeostasis has been shown in the liver. Here, we report CRTC2 expression in distinct areas of the CNS, including hypothalamic neurons. We show that hypothalamic CRTC2 phosphorylation and subcellular localization is altered by nutrient state. Specifically, glucose regulates hypothalamic CRTC2 activity via AMP-activated protein kinase (AMPK)-mediated phosphorylation of CRTC2. Hypothalamic AMPK controls the expression of the cAMP response element (CRE) gene, insulin receptor substrate 2 (Irs2), by regulating CRTC2 occupancy of the Irs2 promoter. Indeed, CRTC2 is required for the appropriate expression of specific hypothalamic CRE genes. Our data identify CRTC2 as a new hypothalamic AMPK target and highlight a role for CRTC2 in the mechanisms linking hypothalamic glucose sensing with CRE gene regulation.


Assuntos
Regulação da Expressão Gênica , Glucose/metabolismo , Hipotálamo/metabolismo , Transativadores/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Camundongos , Ratos , Técnicas de Cultura de Tecidos , Fatores de Transcrição
9.
Neuron ; 49(2): 191-203, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16423694

RESUMO

Leptin, an adipocyte-derived hormone, acts directly on the brain to control food intake and energy expenditure. An important question is the identity of first-order neurons initiating leptin's anti-obesity effects. A widely held view is that most, if not all, of leptin's effects are mediated by neurons located in the arcuate nucleus of the hypothalamus. However, leptin receptors (LEPRs) are expressed in other sites as well, including the ventromedial hypothalamus (VMH). The possible role of leptin acting in "nonarcuate" sites has largely been ignored. In the present study, we show that leptin depolarizes and increases the firing rate of steroidogenic factor-1 (SF1)-positive neurons in the VMH. We also show, by generating mice that lack LEPRs on SF1-positive neurons, that leptin action at this site plays an important role in reducing body weight and, of note, in resisting diet-induced obesity. These results reveal a critical role for leptin action on VMH neurons.


Assuntos
Peso Corporal/fisiologia , Proteínas de Homeodomínio/fisiologia , Homeostase/fisiologia , Leptina/farmacologia , Neurônios/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/fisiologia , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/genética , Composição Corporal/fisiologia , Dieta , Eletrofisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Homeostase/efeitos dos fármacos , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/fisiopatologia , Técnicas de Patch-Clamp , Fenótipo , Sondas RNA , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores para Leptina , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator Esteroidogênico 1 , Fatores de Transcrição/genética , Núcleo Hipotalâmico Ventromedial/citologia
10.
Neuron ; 51(2): 239-49, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16846858

RESUMO

The neural pathways through which central serotonergic systems regulate food intake and body weight remain to be fully elucidated. We report that serotonin, via action at serotonin1B receptors (5-HT1BRs), modulates the endogenous release of both agonists and antagonists of the melanocortin receptors, which are a core component of the central circuitry controlling body weight homeostasis. We also show that serotonin-induced hypophagia requires downstream activation of melanocortin 4, but not melanocortin 3, receptors. These results identify a primary mechanism underlying the serotonergic regulation of energy balance and provide an example of a centrally derived signal that reciprocally regulates melanocortin receptor agonists and antagonists in a similar manner to peripheral adiposity signals.


Assuntos
Ingestão de Alimentos/fisiologia , Neurônios/fisiologia , Receptor Tipo 3 de Melanocortina/fisiologia , Receptor 5-HT1B de Serotonina/fisiologia , Receptores de Melanocortina/fisiologia , Serotonina/fisiologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Estimulação Elétrica , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Piridinas/farmacologia , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/fisiologia , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/antagonistas & inibidores , Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina
11.
J Clin Invest ; 116(7): 1886-901, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16794735

RESUMO

Leptin and insulin have been identified as fuel sensors acting in part through their hypothalamic receptors to inhibit food intake and stimulate energy expenditure. As their intracellular signaling converges at the PI3K pathway, we directly addressed the role of phosphatidylinositol3,4,5-trisphosphate-mediated (PIP3-mediated) signals in hypothalamic proopiomelanocortin (POMC) neurons by inactivating the gene for the PIP3 phosphatase Pten specifically in this cell type. Here we show that POMC-specific disruption of Pten resulted in hyperphagia and sexually dimorphic diet-sensitive obesity. Although leptin potently stimulated Stat3 phosphorylation in POMC neurons of POMC cell-restricted Pten knockout (PPKO) mice, it failed to significantly inhibit food intake in vivo. POMC neurons of PPKO mice showed a marked hyperpolarization and a reduction in basal firing rate due to increased ATP-sensitive potassium (KATP) channel activity. Leptin was not able to elicit electrical activity in PPKO POMC neurons, but application of the PI3K inhibitor LY294002 and the KATP blocker tolbutamide restored electrical activity and leptin-evoked firing of POMC neurons in these mice. Moreover, icv administration of tolbutamide abolished hyperphagia in PPKO mice. These data indicate that PIP3-mediated signals are critical regulators of the melanocortin system via modulation of KATP channels.


Assuntos
Neurônios/metabolismo , Obesidade , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potássio/metabolismo , Pró-Opiomelanocortina/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Animais , Cromonas/metabolismo , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Hipoglicemiantes/farmacologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Morfolinas/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Tolbutamida/farmacologia
12.
Exp Physiol ; 94(8): 857-66, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19542189

RESUMO

Obesity, due to its associated co-morbidities, including type 2 diabetes and cardiovascular disease, is at the forefront of today's health care concerns. Our need for novel, multifaceted approaches to tackle the global increase of waistlines is urgent, and understanding the physiological processes underlying our vulnerability to weight gain is an important one of them. Evidence for considerable heritability of body weight indicates genetic influences in the susceptibility to our obesogenic environment. Here, we will focus on neurons in brain structures such as the hypothalamus, which sense the body's metabolic state and, through an intricate cascade of events, elicit an appropriate response. We will explore the use of genetically modified mouse models in the investigation of physiological functions of genes and pathways in neuronal regulation of metabolic balance. Use of these techniques allows us to make manipulations at the molecular level (e.g. in the neuronal metabolic sensing mechanism) and combine this with systems-level physiological analysis (e.g. body weight). Recent technological advances also enable the investigation of the contributions of genes to the co-morbidities of obesity, such as obesity-induced hypertension. Reviewing examples of improvements as well as large gaps in our knowledge, this lecture aims to incite interest in whole body physiological research.


Assuntos
Metabolismo Energético/fisiologia , Fome , Hipotálamo/fisiologia , Neurônios/fisiologia , Obesidade/genética , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Metabolismo Energético/genética , Homeostase/genética , Homeostase/fisiologia , Hipertensão/etiologia , Camundongos , Obesidade/complicações , Pró-Opiomelanocortina/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia
13.
Nat Neurosci ; 8(10): 1289-91, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16158063

RESUMO

Multiple hormones controlling energy homeostasis regulate the expression of neuropeptide Y (NPY) and agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus. Nevertheless, inactivation of the genes encoding NPY and/or AgRP has no impact on food intake in mice. Here we demonstrate that induced selective ablation of AgRP-expressing neurons in adult mice results in acute reduction of feeding, demonstrating direct evidence for a critical role of these neurons in the regulation of energy homeostasis.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Comportamento Alimentar/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Proteínas/metabolismo , Proteína Relacionada com Agouti , Animais , Anorexia/metabolismo , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Contagem de Células/métodos , Toxina Diftérica/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proteínas/genética , Fatores de Tempo , beta-Galactosidase/biossíntese
14.
Neuron ; 102(3): 653-667.e6, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30879785

RESUMO

SIM1-expressing paraventricular hypothalamus (PVH) neurons are key regulators of energy balance. Within the PVHSIM1 population, melanocortin-4 receptor-expressing (PVHMC4R) neurons are known to regulate satiety and bodyweight, yet they account for only half of PVHSIM1 neuron-mediated regulation. Here we report that PVH prodynorphin-expressing (PVHPDYN) neurons, which notably lack MC4Rs, function independently and additively with PVHMC4R neurons to account for the totality of PVHSIM1 neuron-mediated satiety. Moreover, PVHPDYN neurons are necessary for prevention of obesity in an independent but equipotent manner to PVHMC4R neurons. While PVHPDYN and PVHMC4R neurons both project to the parabrachial complex (PB), they synaptically engage distinct efferent nodes, the pre-locus coeruleus (pLC), and central lateral parabrachial nucleus (cLPBN), respectively. PB-projecting PVHPDYN neurons, like PVHMC4R neurons, receive input from interoceptive ARCAgRP neurons, respond to caloric state, and are sufficient and necessary to control food intake. This expands the CNS satiety circuitry to include two non-overlapping PVH to hindbrain circuits.


Assuntos
Comportamento Alimentar/fisiologia , Neurônios/citologia , Obesidade/fisiopatologia , Núcleo Hipotalâmico Paraventricular/citologia , Resposta de Saciedade/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metabolismo Energético , Encefalinas/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiologia , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Precursores de Proteínas/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Proteínas Repressoras/metabolismo
15.
Neuron ; 42(6): 983-91, 2004 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15207242

RESUMO

Neuroanatomical and electrophysiological studies have shown that hypothalamic POMC neurons are targets of the adipostatic hormone leptin. However, the physiological relevance of leptin signaling in these neurons has not yet been directly tested. Here, using the Cre/loxP system, we critically test the functional importance of leptin action on POMC neurons by deleting leptin receptors specifically from these cells in mice. Mice lacking leptin signaling in POMC neurons are mildly obese, hyperleptinemic, and have altered expression of hypothalamic neuropeptides. In summary, leptin receptors on POMC neurons are required but not solely responsible for leptin's regulation of body weight homeostasis.


Assuntos
Peso Corporal/fisiologia , Homeostase/fisiologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Fatores Etários , Animais , Composição Corporal/genética , Ingestão de Alimentos/genética , Feminino , Expressão Gênica/genética , Proteínas de Fluorescência Verde , Hipotálamo/citologia , Hipotálamo/metabolismo , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Leptina/sangue , Leptina/farmacologia , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeos/metabolismo , Consumo de Oxigênio/genética , Pró-Opiomelanocortina/genética , RNA Mensageiro/metabolismo , Receptores para Leptina , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores Sexuais , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina , Fatores de Transcrição/metabolismo , alfa-MSH/metabolismo
16.
Endocrinology ; 149(4): 1773-85, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18162515

RESUMO

Two known types of leptin-responsive neurons reside within the arcuate nucleus: the agouti gene-related peptide (AgRP)/neuropeptide Y (NPY) neuron and the proopiomelanocortin (POMC) neuron. By deleting the leptin receptor gene (Lepr) specifically in AgRP/NPY and/or POMC neurons of mice, we examined the several and combined contributions of these neurons to leptin action. Body weight and adiposity were increased by Lepr deletion from AgRP and POMC neurons individually, and simultaneous deletion in both neurons (A+P LEPR-KO mice) further increased these measures. Young (periweaning) A+P LEPR-KO mice exhibit hyperphagia and decreased energy expenditure, with increased weight gain, oxidative sparing of triglycerides, and increased fat accumulation. Interestingly, however, many of these abnormalities were attenuated in adult animals, and high doses of leptin partially suppress food intake in the A+P LEPR-KO mice. Although mildly hyperinsulinemic, the A+P LEPR-KO mice displayed normal glucose tolerance and fertility. Thus, AgRP/NPY and POMC neurons each play mandatory roles in aspects of leptin-regulated energy homeostasis, high leptin levels in adult mice mitigate the importance of leptin-responsiveness in these neurons for components of energy balance, suggesting the presence of other leptin-regulated pathways that partially compensate for the lack of leptin action on the POMC and AgRP/NPY neurons.


Assuntos
Proteína Relacionada com Agouti/fisiologia , Ingestão de Alimentos , Metabolismo Energético , Pró-Opiomelanocortina/fisiologia , Receptores para Leptina/fisiologia , Animais , Composição Corporal , Fertilidade , Hiperinsulinismo/etiologia , Hiperfagia , Lactação , Masculino , Camundongos , Neuropeptídeo Y/fisiologia
17.
J Clin Invest ; 115(12): 3564-72, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16322794

RESUMO

Ghrelin is the endogenous ligand for the growth hormone secretagogue receptor (GHSR; ghrelin receptor). Since its discovery, accumulating evidence has suggested that ghrelin may play a role in signaling and reversing states of energy insufficiency. For example, ghrelin levels rise following food deprivation, and ghrelin administration stimulates feeding and increases body weight and adiposity. However, recent loss-of-function studies have raised questions regarding the physiological significance of ghrelin in regulating these processes. Here, we present results of a study using a novel GHSR-null mouse model, in which ghrelin administration fails to acutely stimulate food intake or activate arcuate nucleus neurons. We show that when fed a high-fat diet, both female and male GHSR-null mice eat less food, store less of their consumed calories, preferentially utilize fat as an energy substrate, and accumulate less body weight and adiposity than control mice. Similar effects on body weight and adiposity were also observed in female, but not male, GHSR-null mice fed standard chow. GHSR deletion also affected locomotor activity and levels of glycemia. These findings support the hypothesis that ghrelin-responsive pathways are an important component of coordinated body weight control. Moreover, our data suggest that ghrelin signaling is required for development of the full phenotype of diet-induced obesity.


Assuntos
Dieta , Obesidade/genética , Hormônios Peptídicos/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Tecido Adiposo/metabolismo , Alelos , Análise de Variância , Ração Animal , Animais , Glicemia/metabolismo , Southern Blotting , Western Blotting , Composição Corporal , Peso Corporal , Cruzamentos Genéticos , DNA/metabolismo , Feminino , Deleção de Genes , Predisposição Genética para Doença , Genótipo , Grelina , Heterozigoto , Homeostase , Hiperglicemia/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Neurônios/metabolismo , Obesidade/metabolismo , Hormônios Peptídicos/química , Fenótipo , RNA Mensageiro/metabolismo , Receptores de Grelina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Transdução de Sinais , Coloração pela Prata , Fatores de Tempo
18.
PLoS One ; 11(4): e0153187, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27077912

RESUMO

Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as ß-endorphin, which has a key role in endogenous analgesia. The ß-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, p<0.001; n = 8). All effects of NTSPOMC activation were blocked by systemic naloxone (opioid antagonist) but not by SHU9119 (melanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control.


Assuntos
Analgesia , Bradicardia/metabolismo , Tronco Encefálico/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Insuficiência Respiratória/metabolismo , Analgésicos Opioides/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Channelrhodopsins , Feminino , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos Transgênicos , Microscopia Confocal , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neurônios/efeitos dos fármacos , Núcleo Solitário/citologia , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo
19.
J Comp Neurol ; 493(1): 63-71, 2005 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-16254991

RESUMO

The past decade has greatly increased our understanding and appreciation of the ability of the central nervous system (CNS) to regulate food intake and body weight. This was spearheaded by the discovery of key molecules regulating body weight homeostasis. It is now also apparent that the CNS, especially the hypothalamus, plays a primary role in directly regulating glucose homeostasis, independently of effects on body weight. These discoveries are important given the increasing incidences of obesity and type II diabetes in Western societies. In this article, we will highlight recent data from genetically modified mice. These data and other models have helped to dissect the CNS pathways regulating body weight and glucose homeostasis. Finally, although these studies have been illustrative, they also underscore our relative lack of knowledge and highlight the need for more definitive approaches to unravel the functional significance of these pathways.


Assuntos
Glicemia/metabolismo , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Hipotálamo/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Homeostase/fisiologia , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Leptina/metabolismo , Leptina/farmacologia , Leptina/fisiologia , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Receptores para Leptina
20.
Endocrinology ; 145(4): 1602-11, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14701677

RESUMO

The type 1A GH secretagogue (GHS) receptor (GHSR) has been proposed to mediate the effects of ghrelin on GH release, food intake, and body composition. We have overexpressed GHSR in GH-producing GC cells and GHRH neurons in an attempt to enhance signaling via this pathway selectively, in the GH axis. Constitutive overexpression of human GHSR in rat GC cell lines resulted in increased basal phosphoinositol turnover and rendered them responsive to GHS ligands. We then generated transgenic mice overexpressing human GHSR in GHRH neurons using a 38-kb rat GHRH cosmid promoter. GHRH-GHSR transgenic mice showed increased hypothalamic GHRH expression, pituitary GH contents, and postweaning growth rates. Body weights of the transgenic mice became similar in adulthood, whereas adipose mass was reduced, particularly so in female GHRH-GHSR mice. Organ and muscle weights of transgenic mice were increased despite chronic exposure to a high fat diet. These results suggest that constitutive overexpression of GHSR in GHRH neurons up-regulates basal activity in the GHRH-GH axis. However, GHRH-GHSR mice showed no evidence of increased sensitivity to acute or chronic treatment with exogenous GHS ligands. Food intake and adipose tissue responses to chronic high fat feeding and treatment with GHS ligands were unaffected, as were locomotor and anxiety behaviors, although GHRH-GHSR mice remained significantly leaner than wild-type littermates. Thus, constitutive overexpression of GHSR can up-regulate basal signaling activity in the GHRH/GH axis and reduce adiposity without affecting other GHSR-mediated signals.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Tecido Adiposo/patologia , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Linhagem Celular , Gorduras na Dieta/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Hormônio do Crescimento/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/crescimento & desenvolvimento , Atividade Motora , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Oligopeptídeos/farmacologia , Prolactina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Receptores de Grelina , Magreza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA