Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Annu Rev Biochem ; 81: 795-822, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22482909

RESUMO

Is it possible to meaningfully comprehend the diversity of the viral world? We propose that it is. This is based on the observation that, although there is immense genomic variation, every infective virion is restricted by strict constraints in structure space (i.e., there are a limited number of ways to fold a protein chain, and only a small subset of these have the potential to construct a virion, the hallmark of a virus). We have previously suggested the use of structure for the higher-order classification of viruses, where genomic similarities are no longer observable. Here, we summarize the arguments behind this proposal, describe the current status of structural work, highlighting its power to infer common ancestry, and discuss the limitations and obstacles ahead of us. We also reflect on the future opportunities for a more concerted effort to provide high-throughput methods to facilitate the large-scale sampling of the virosphere.


Assuntos
Fenômenos Fisiológicos Virais , Vírus/classificação , Animais , Genoma Viral , Humanos , Células Procarióticas/virologia , Vírion/fisiologia , Viroses/virologia , Vírus/genética , Vírus/metabolismo
2.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463970

RESUMO

Influenza A viruses (IAVs) are viral pathogens that cause epidemics and occasional pandemics of significant mortality. The generation of efficacious vaccines and antiviral drugs remains a challenge due to the rapid appearance of new influenza virus types and antigenic variants. Consequently, novel strategies for the prevention and treatment of IAV infections are needed, given the limitations of the presently available antivirals. Here, we used enzymatically produced IAV-specific double-stranded RNA (dsRNA) molecules and Giardia intestinalis Dicer for the generation of a swarm of small interfering RNA (siRNA) molecules. The siRNAs target multiple conserved genomic regions of the IAVs. In mammalian cells, the produced 25- to 27-nucleotide-long siRNA molecules are processed by endogenous Dicer into 21-nucleotide siRNAs and are thus designated Dicer-substrate siRNAs (DsiRNAs). We evaluated the efficacy of the above DsiRNA swarm at preventing IAV infections in human primary monocyte-derived macrophages and dendritic cells. The replication of different IAV strains, including avian influenza H5N1 and H7N9 viruses, was significantly inhibited by pretransfection of the cells with the IAV-specific DsiRNA swarm. Up to 7 orders of magnitude inhibition of viral RNA expression was observed, which led to a dramatic inhibition of IAV protein synthesis and virus production. The IAV-specific DsiRNA swarm inhibited virus replication directly through the RNA interference pathway although a weak induction of innate interferon responses was detected. Our results provide direct evidence for the feasibility of the siRNA strategy and the potency of DsiRNA swarms in the prevention and treatment of influenza, including the highly pathogenic avian influenza viruses.IMPORTANCE In spite of the enormous amount of research, influenza virus is still one of the major challenges for medical virology due to its capacity to generate new variants, which potentially lead to severe epidemics and pandemics. We demonstrated here that a swarm of small interfering RNA (siRNA) molecules, including more than 100 different antiviral RNA molecules targeting the most conserved regions of the influenza A virus genome, could efficiently inhibit the replication of all tested avian and seasonal influenza A variants in human primary monocyte-derived macrophages and dendritic cells. The wide antiviral spectrum makes the virus-specific siRNA swarm a potentially efficient treatment modality against both avian and seasonal influenza viruses.


Assuntos
Vírus da Influenza A/genética , Influenza Aviária/genética , RNA Interferente Pequeno/farmacologia , Animais , Antivirais/farmacologia , Aves , Linhagem Celular , RNA Helicases DEAD-box , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/virologia , Cães , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/virologia , Influenza Humana/genética , Influenza Humana/virologia , Interferons/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Células Madin Darby de Rim Canino , Cultura Primária de Células , RNA Interferente Pequeno/genética , Ribonuclease III , Replicação Viral/efeitos dos fármacos
3.
Environ Microbiol ; 21(6): 2129-2147, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30920125

RESUMO

The diversity of archaeal viruses is severely undersampled compared with that of viruses infecting bacteria and eukaryotes, limiting our understanding on their evolution and environmental impacts. Here, we describe the isolation and characterization of four new viruses infecting halophilic archaea from the saline Lake Retba, located close to Dakar on the coast of Senegal. Three of the viruses, HRPV10, HRPV11 and HRPV12, have enveloped pleomorphic virions and should belong to the family Pleolipoviridae, whereas the forth virus, HFTV1, has an icosahedral capsid and a long non-contractile tail, typical of bacterial and archaeal members of the order Caudovirales. Comparative genomic and phylogenomic analyses place HRPV10, HRPV11 and HRPV12 into the genus Betapleolipovirus, whereas HFTV1 appears to be most closely related to the unclassified Halorubrum virus HRTV-4. Differently from HRTV-4, HFTV1 encodes host-derived minichromosome maintenance helicase and PCNA homologues, which are likely to orchestrate its genome replication. HFTV1, the first archaeal virus isolated on a Haloferax strain, could also infect Halorubrum sp., albeit with an eightfold lower efficiency, whereas pleolipoviruses nearly exclusively infected autochthonous Halorubrum strains. Mapping of the metagenomic sequences from this environment to the genomes of isolated haloarchaeal viruses showed that these known viruses are underrepresented in the available viromes.


Assuntos
Vírus de Archaea/isolamento & purificação , Haloferax/virologia , Halorubrum/virologia , Lagos/virologia , Vírus de Archaea/classificação , Vírus de Archaea/genética , Metagenoma , Filogenia , Senegal , Vírion/classificação , Vírion/genética , Vírion/isolamento & purificação
4.
RNA ; 23(1): 119-129, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803153

RESUMO

Genome packaging of double-stranded RNA (dsRNA) phages has been widely studied using biochemical and molecular biology methods. We adapted the existing in vitro packaging system of one such phage for single-molecule experimentation. To our knowledge, this is the first attempt to study the details of viral RNA packaging using optical tweezers. Pseudomonas phage φ6 is a dsRNA virus with a tripartite genome. Positive-sense (+) single-stranded RNA (ssRNA) genome precursors are packaged into a preformed procapsid (PC), where negative strands are synthesized. We present single-molecule measurements of the viral ssRNA packaging by the φ6 PC. Our data show that packaging proceeds intermittently in slow and fast phases, which likely reflects differences in the unfolding of the RNA secondary structures of the ssRNA being packaged. Although the mean packaging velocity was relatively low (0.07-0.54 nm/sec), packaging could reach 4.62 nm/sec during the fast packaging phase.


Assuntos
Bacteriófago phi 6/fisiologia , RNA Viral/genética , Bacteriófago phi 6/genética , Técnicas In Vitro , Modelos Moleculares , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Viral/química , Montagem de Vírus
5.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122979

RESUMO

Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds.IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Vírus/classificação , Análise por Conglomerados , Conformação Proteica , Vírus/genética , Vírus/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 112(8): 2449-54, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675521

RESUMO

Lemon-shaped viruses are common in nature but so far have been observed to infect only archaea. Due to their unusual shape, the structures of these viruses are challenging to study and therefore poorly characterized. Here, we have studied haloarchaeal virus His1 using cryo-electron tomography as well as biochemical dissociation. The virions have different sizes, but prove to be extremely stable under various biochemical treatments. Subtomogram averaging of the computationally extracted virions resolved a tail-like structure with a central tail hub density and six tail spikes. Inside the tail there are two cavities and a plug density that separates the tail hub from the interior genome. His1 most likely uses the tail spikes to anchor to host cells and the tail hub to eject the genome, analogous to classic tailed bacteriophages. Upon biochemical treatment that releases the genome, the lemon-shaped virion transforms into an empty tube. Such a dramatic transformation demonstrates that the capsid proteins are capable of undergoing substantial quaternary structural changes, which may occur at different stages of the virus life cycle.


Assuntos
Vírus de Archaea/química , Capsídeo/química , Haloarcula/virologia , Vírus de Archaea/genética , Tomografia com Microscopia Eletrônica , Genoma Viral , Vírion/química
7.
J Gen Virol ; 98(12): 2916-2917, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29125455

RESUMO

Members of the family Pleolipoviridae (termed pleolipoviruses) are pseudo-spherical and pleomorphic archaeal viruses. The enveloped virion is a simple membrane vesicle, which encloses different types of DNA genomes of approximately 7-16 kbp (or kilonucleotides). Typically, virions contain a single type of transmembrane (spike) protein at the envelope and a single type of membrane protein, which is embedded in the envelope and located in the internal side of the membrane. All viruses infect extremely halophilic archaea in the class Halobacteria (phylum Euryarchaeota). Pleolipoviruses have a narrow host range and a persistent, non-lytic life cycle. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Pleolipoviridae which is available at www.ictv.global/report/pleolipoviridae.


Assuntos
Vírus/classificação , Genoma Viral , Especificidade de Hospedeiro , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fenômenos Fisiológicos Virais , Vírus/genética , Vírus/isolamento & purificação
8.
PLoS Biol ; 12(12): e1002024, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25514469

RESUMO

Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.


Assuntos
Bacteriófago PRD1/genética , Bacteriófago PRD1/ultraestrutura , DNA Viral/genética , DNA/genética , Genoma Viral , Modelos Moleculares , Montagem de Vírus/genética , Capsídeo/química , Microscopia Crioeletrônica , DNA Viral/ultraestrutura , Processamento de Imagem Assistida por Computador , Proteínas de Membrana , Membranas , Mutação/genética , Proteínas Virais , Vírion/genética , Vírion/ultraestrutura
9.
Biochim Biophys Acta Gen Subj ; 1861(3): 664-672, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27993658

RESUMO

Genome packaging and delivery are fundamental steps in the replication cycle of all viruses. Icosahedral viruses with linear double-stranded DNA (dsDNA) usually package their genome into a preformed, rigid procapsid using the power generated by a virus-encoded packaging ATPase. The pressure and stored energy due to this confinement of DNA at a high density is assumed to drive the initial stages of genome ejection. Membrane-containing icosahedral viruses, such as bacteriophage PRD1, present an additional architectural complexity by enclosing their genome within an internal membrane vesicle. Upon adsorption to a host cell, the PRD1 membrane remodels into a proteo-lipidic tube that provides a conduit for passage of the ejected linear dsDNA through the cell envelope. Based on volume analyses of PRD1 membrane vesicles captured by cryo-electron tomography and modeling of the elastic properties of the vesicle, we propose that the internal membrane makes a crucial and active contribution during infection by maintaining the driving force for DNA ejection and countering the internal turgor pressure of the host. These novel functions extend the role of the PRD1 viral membrane beyond tube formation or the mere physical confinement of the genome. The presence and assistance of an internal membrane might constitute a biological advantage that extends also to other viruses that package their linear dsDNA to high density within an internal vesicle.


Assuntos
Membrana Celular/metabolismo , DNA Viral/genética , Adenosina Trifosfatases/metabolismo , Bacteriófago PRD1/genética , Capsídeo/metabolismo , DNA/genética , Genoma Viral/genética , Proteínas Virais/genética , Montagem de Vírus/genética
10.
Extremophiles ; 21(6): 1119-1132, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29019077

RESUMO

Viruses come in various shapes and sizes, and a number of viruses originate from extremities, e.g. high salinity or elevated temperature. One challenge for studying extreme viruses is to find efficient purification conditions where viruses maintain their infectivity. Asymmetrical flow field-flow fractionation (AF4) is a gentle native chromatography-like technique for size-based separation. It does not have solid stationary phase and the mobile phase composition is readily adjustable according to the sample needs. Due to the high separation power of specimens up to 50 µm, AF4 is suitable for virus purification. Here, we applied AF4 for extremophilic viruses representing four morphotypes: lemon-shaped, tailed and tailless icosahedral, as well as pleomorphic enveloped. AF4 was applied to input samples of different purity: crude supernatants of infected cultures, polyethylene glycol-precipitated viruses and viruses purified by ultracentrifugation. All four virus morphotypes were successfully purified by AF4. AF4 purification of culture supernatants or polyethylene glycol-precipitated viruses yielded high recoveries, and the purities were comparable to those obtained by the multistep ultracentrifugation purification methods. In addition, we also demonstrate that AF4 is a rapid monitoring tool for virus production in slowly growing host cells living in extreme conditions.


Assuntos
Vírus de Archaea/química , Cromatografia/métodos , Vírus de Archaea/metabolismo , Tolerância ao Sal
11.
Mol Microbiol ; 98(6): 1002-20, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26331239

RESUMO

Proviral regions have been identified in the genomes of many haloarchaea, but only a few archaeal halophilic temperate viruses have been studied. Here, we report a new virus, SNJ2, originating from archaeal strain Natrinema sp. J7-1. We demonstrate that this temperate virus coexists with SNJ1 virus and is dependent on SNJ1 for efficient production. Here, we show that SNJ1 is an icosahedral membrane-containing virus, whereas SNJ2 is a pleomorphic one. Instead of producing progeny virions and forming plaques, SNJ2 integrates into the host tRNA(Met) gene. The virion contains a discontinuous, circular, double-stranded DNA genome of 16 992 bp, in which both nicks and single-stranded regions are present preceded by a 'GCCCA' motif. Among 25 putative SNJ2 open reading frames (ORFs), five of them form a cluster of conserved ORFs homologous to archaeal pleolipoviruses isolated from hypersaline environments. Two structural protein encoding genes in the conserved cluster were verified in SNJ2. Furthermore, SNJ2-like proviruses containing the conserved gene cluster were identified in the chromosomes of archaea belonging to 10 different genera. Comparison of SNJ2 and these proviruses suggests that they employ a similar integration strategy into a tRNA gene.


Assuntos
Vírus de Archaea/genética , Vírus de Archaea/isolamento & purificação , Genoma Arqueal , Halobacteriaceae/virologia , Provírus/genética , Animais , Vírus de Archaea/classificação , Vírus de Archaea/fisiologia , Lisogenia , Família Multigênica , Fases de Leitura Aberta , Provírus/ultraestrutura , RNA de Transferência/genética , Vírion/genética , Integração Viral
12.
Environ Microbiol ; 18(2): 565-79, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26628271

RESUMO

Live microbes have been isolated from rock salt up to Permian age. Only obligatory cellular functions can be performed in halite-buried cells. Consequently, their genomic sequences are likely to remain virtually unchanged. However, the available sequence information from these organisms is scarce and consists of mainly ribosomal 16S sequences. Here, live archaea were isolated from early Cretaceous (∼ 123 million years old) halite from the depth of 2000 m in Qianjiang Depression, Hubei Province, China. The sample was radiologically dated and subjected to rigorous surface sterilization before microbe isolation. The isolates represented a single novel species of Halobacterium, for which we suggest the name Halobacterium hubeiense, type strain Hbt. hubeiense JI20-1. The species was closely related to a Permian (225-280 million years old) isolate, Halobacterium noricense, originating from Alpine rock salt. This study is the first one to publish the complete genome of an organism originating from surface-sterilized ancient halite. In the future, genomic data from halite-buried microbes can become a key factor in understanding the mechanisms by which these organisms are able to survive in harsh conditions deep underground or possibly on other celestial bodies.


Assuntos
DNA Arqueal/genética , Genoma Arqueal/genética , Halobacterium/genética , Cloreto de Sódio , Sequência de Bases , China , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Halobacterium/classificação , Halobacterium/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
J Virol ; 89(22): 11681-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26355093

RESUMO

UNLABELLED: Geothermal and hypersaline environments are rich in virus-like particles, among which spindle-shaped morphotypes dominate. Currently, viruses with spindle- or lemon-shaped virions are exclusive to Archaea and belong to two distinct viral families. The larger of the two families, the Fuselloviridae, comprises tail-less, spindle-shaped viruses, which infect hosts from phylogenetically distant archaeal lineages. Sulfolobus spindle-shaped virus 1 (SSV1) is the best known member of the family and was one of the first hyperthermophilic archaeal viruses to be isolated. SSV1 is an attractive model for understanding virus-host interactions in Archaea; however, the constituents and architecture of SSV1 particles remain only partially characterized. Here, we have conducted an extensive biochemical characterization of highly purified SSV1 virions and identified four virus-encoded structural proteins, VP1 to VP4, as well as one DNA-binding protein of cellular origin. The virion proteins VP1, VP3, and VP4 undergo posttranslational modification by glycosylation, seemingly at multiple sites. VP1 is also proteolytically processed. In addition to the viral DNA-binding protein VP2, we show that viral particles contain the Sulfolobus solfataricus chromatin protein Sso7d. Finally, we provide evidence indicating that SSV1 virions contain glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, resolving a long-standing debate on the presence of lipids within SSV1 virions. A comparison of the contents of lipids isolated from the virus and its host cell suggests that GDGTs are acquired by the virus in a selective manner from the host cytoplasmic membrane, likely during progeny egress. IMPORTANCE: Although spindle-shaped viruses represent one of the most prominent viral groups in Archaea, structural data on their virion constituents and architecture still are scarce. The comprehensive biochemical characterization of the hyperthermophilic virus SSV1 presented here brings novel and significant insights into the organization and architecture of spindle-shaped virions. The obtained data permit the comparison between spindle-shaped viruses residing in widely different ecological niches, improving our understanding of the adaptation of viruses with unusual morphotypes to extreme environmental conditions.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fuselloviridae/metabolismo , Lipídeos de Membrana/metabolismo , Sulfolobus solfataricus/virologia , Sequência de Aminoácidos , Fuselloviridae/genética , Genoma Viral/genética , Glicosilação , Haloarcula/virologia , Interações Hospedeiro-Patógeno , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Proteínas Virais/metabolismo , Montagem de Vírus/genética
14.
J Med Virol ; 88(12): 2196-2205, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27191509

RESUMO

Herpes simplex virus (HSV) is a common human pathogen causing severe diseases such as encephalitis, keratitis, and neonatal herpes. There is no vaccine against HSV and the current antiviral chemotherapy fails to treat certain forms of the disease. Here, we evaluated the antiviral activity of enzymatically created small interfering (si)RNA pools against various pathogenic HSV strains as potential candidates for antiviral therapies. Pools of siRNA targeting 0.5-0.8 kbp of essential HSV genes UL54, UL29, or UL27 were enzymatically synthesized. Efficacy of inhibition of each siRNA pool was evaluated against multiple clinical isolates and laboratory wild type HSV-1 strains using three cell lines representing host tissues that support HSV-1 replication: epithelial, ocular, and cells that originated from the nervous system. The siRNA pools targeting UL54, UL29, and UL27, as well as their equimolar mixture, inhibited HSV replication, with the pool targeting UL29 having the most prominent antiviral effect. In contrast, the non-specific control siRNA pool did not have such an effect. Moreover, the UL29 pool elicited only a minimal innate immune response in the HSV-infected cells, thus evidencing the safety of its potential clinical use. These results are promising for the development of a topical RNA interference approach for clinical treatment of HSV infection. J. Med. Virol. 88:2196-2205, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Linhagem Celular , Descoberta de Drogas , Herpes Simples/virologia , Humanos , Imunidade Inata , Ensaio de Placa Viral , Replicação Viral
15.
FEMS Yeast Res ; 16(2): fow003, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26818855

RESUMO

Saccharomyces cerevisiae cells produce killer toxins, such as K1, K2 and K28, that can modulate the growth of other yeasts giving advantage for the killer strains. Here we focused on the physiological changes induced by K2 toxin on a non-toxin-producing yeast strain as well as K1, K2 and K28 killer strains. Potentiometric measurements were adjusted to observe that K2 toxin immediately acts on the sensitive cells leading to membrane permeability. This correlated with reduced respiration activity, lowered intracellular ATP content and decrease in cell viability. However, we did not detect any significant ATP leakage from the cells treated by killer toxin K2. Strains producing heterologous toxins K1 and K28 were less sensitive to K2 than the non-toxin producing one suggesting partial cross-protection between the different killer systems. This phenomenon may be connected to the observed differences in respiratory activities of the killer strains and the non-toxin-producing strain at low pH. This might also have practical consequences in wine industry; both as beneficial ones in controlling contaminating yeasts and non-beneficial ones causing sluggish fermentation.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Fatores Matadores de Levedura/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Trifosfato de Adenosina/análise , Viabilidade Microbiana/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Saccharomyces cerevisiae/química
16.
PLoS Biol ; 11(9): e1001667, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24086111

RESUMO

In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems.


Assuntos
Bacteriófago PRD1/genética , Genoma Viral/genética , Nanotubos/virologia , Proteínas da Cauda Viral/metabolismo , Integração Viral/genética , Bacteriófago PRD1/crescimento & desenvolvimento , Bacteriófago PRD1/metabolismo , Capsídeo/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virologia , DNA Viral/genética , Microscopia Eletrônica , Salmonella typhimurium/virologia , Integração Viral/fisiologia
17.
Arch Virol ; 161(1): 249-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459284

RESUMO

Viruses infecting archaea show a variety of virion morphotypes, and they are currently classified into more than ten viral families or corresponding groups. A pleomorphic virus morphotype is very common among haloarchaeal viruses, and to date, several such viruses have been isolated. Here, we propose the classification of eight such viruses and formation of a new family, Pleolipoviridae (from the Greek pleo for more or many and lipos for lipid), containing three genera, Alpha-, Beta-, and Gammapleolipovirus. The proposal is currently under review by the International Committee on Taxonomy of Viruses (ICTV). The members of the proposed family Pleolipoviridae infect halophilic archaea and are nonlytic. They share structural and genomic features and differ from any other classified virus. The virion of pleolipoviruses is composed of a pleomorphic membrane vesicle enclosing the genome. All pleolipoviruses have two major structural protein species, internal membrane and spike proteins. Although the genomes of the pleolipoviruses are single- or double-stranded, linear or circular DNA molecules, they share the same genome organization and gene synteny and show significant similarity at the amino acid level. The canonical features common to all members of the proposed family Pleolipoviridae show that they are closely related and thus form a new viral family.


Assuntos
Archaea/virologia , Vírus de Archaea/isolamento & purificação , DNA Viral/genética , Genoma Viral , Vírus de Archaea/classificação , Vírus de Archaea/genética , Sequência de Bases , Dados de Sequência Molecular , Filogenia
18.
Mol Cell ; 31(5): 749-61, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18775333

RESUMO

Recent, primarily structural observations indicate that related viruses, harboring no sequence similarity, infect hosts of different domains of life. One such clade of viruses, defined by common capsid architecture and coat protein fold, is the so-called PRD1-adenovirus lineage. Here we report the structure of the marine lipid-containing bacteriophage PM2 determined by crystallographic analyses of the entire approximately 45 MDa virion and of the outer coat proteins P1 and P2, revealing PM2 to be a primeval member of the PRD1-adenovirus lineage with an icosahedral shell and canonical double beta barrel major coat protein. The view of the lipid bilayer, richly decorated with membrane proteins, constitutes a rare visualization of an in vivo membrane. The viral membrane proteins P3 and P6 are organized into a lattice, suggesting a possible assembly pathway to produce the mature virus.


Assuntos
Evolução Biológica , Proteínas do Capsídeo/química , Corticoviridae/ultraestrutura , Lipídeos/química , Vírus/genética , Cálcio/metabolismo , Proteínas do Capsídeo/classificação , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Corticoviridae/química , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Vírion/química , Vírion/ultraestrutura , Vírus/ultraestrutura
19.
Proc Natl Acad Sci U S A ; 110(26): 10604-9, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23733949

RESUMO

It has been proposed that viruses can be divided into a small number of structure-based viral lineages. One of these lineages is exemplified by bacterial virus Hong Kong 97 (HK97), which represents the head-tailed dsDNA bacteriophages. Seemingly similar viruses also infect archaea. Here we demonstrate using genomic analysis, electron cryomicroscopy, and image reconstruction that the major coat protein fold of newly isolated archaeal Haloarcula sinaiiensis tailed virus 1 has the canonical coat protein fold of HK97. Although it has been anticipated previously, this is physical evidence that bacterial and archaeal head-tailed viruses share a common architectural principle. The HK97-like fold has previously been recognized also in herpesviruses, and this study expands the HK97-like lineage to viruses from all three domains of life. This is only the second established lineage to include archaeal, bacterial, and eukaryotic viruses. Thus, our findings support the hypothesis that the last common universal ancestor of cellular organisms was infected by a number of different viruses.


Assuntos
Vírus de Archaea/química , Vírus de Archaea/ultraestrutura , Proteínas do Capsídeo/química , Haloarcula/virologia , Vírus de Archaea/genética , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Simulação por Computador , Microscopia Crioeletrônica , Genoma Viral , Imageamento Tridimensional , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína
20.
Environ Microbiol ; 17(10): 3628-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25156651

RESUMO

Heterotrophic bacteria are the major prokaryotic component of the Baltic Sea ice microbiome, and it is postulated that phages are among their major parasites. In this study, we sequenced the complete genomes of six earlier reported phage isolates from the Baltic Sea ice infecting Shewanella sp. and Flavobacterium sp. hosts as well as characterized the phage-host interactions. Based on the genome sequences, the six phages were classified into five new genera. Only two phages, 1/4 and 1/40, both infecting Shewanella sp. strains, showed significant nucleotide sequence similarity to each other and could be grouped into the same genus. These two phages are also related to Vibrio-specific phages sharing approximately 25% of the predicted gene products. Nevertheless, cross-titrations showed that the cold-active phages studied are host specific: none of the seven additionally tested, closely related Shewanella strains served as hosts for the phages. Adsorption experiments of two Shewanella phages, 1/4 and 3/49, conducted at 4 °C and at 15 °C revealed relatively fast adsorption rates that are, for example, comparable with those of phages infective in mesophilic conditions. Despite the small number of Shewanella phages characterized here, we could already find different types of phage-host interactions including a putative abortive infection.


Assuntos
Bacteriófagos/classificação , Flavobacterium/virologia , Camada de Gelo/virologia , Shewanella/virologia , Vibrio/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Sequência de Bases , DNA Bacteriano/genética , DNA Viral/genética , Genoma Viral/genética , Processos Heterotróficos , Dados de Sequência Molecular , Oceanos e Mares , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA