Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Environ Res ; 247: 118279, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246301

RESUMO

The presence of hazardous dyes in wastewater poses significant threats to both ecosystems and the natural environment. Conventional methods for treating dye-contaminated water have several limitations, including high costs and complex operational processes. This study investigated a sustainable bio-sorbent composite derived from the Capparis decidua plant and eggshells, and evaluated its effectiveness in removing anionic dyes namely tartrazine (E-102), methyl orange (MO), and their mixed system. The research examines the influence of initial concentration, contact time, pH, adsorbent dosage, and temperature on the adsorption properties of anionic dyes. Optimal removal of tartrazine (E-102), methyl orange (MO), and their mixed system was achieved at a pH of 3. The equilibrium was achieved at 80 min for MO and mixed systems, and 100 min for E-102. The adsorption process showed an exothermic nature, indicating reduced capacity with increasing temperature, consistent with heat release during adsorption. Positive entropy values indicated increased disorder at the solid-liquid interface, attributed to molecular rearrangements and interactions between dye molecules and the adsorbent. Isotherm analysis using Langmuir, Freundlich, Temkin, and Redlich-Peterson models revealed that the Langmuir model best fit the experimental data. The maximum adsorption capacities of 50.97 mg/g, 52.24 mg/g, and 56.23 mg/g were achieved for E-102, MO, and the mixed system under optimized conditions, respectively. The pseudo-second-order kinetic model demonstrated the best fit, indicating that adsorption occurs through physical and chemical interactions such as electrostatic attraction, pore filling, and hydrogen bonding. Hence, the developed bio-sorbent could be a sustainable and cost-effective solution for the treatment of anionic dyes from industrial effluents.


Assuntos
Compostos Azo , Capparis , Poluentes Químicos da Água , Purificação da Água , Animais , Feminino , Corantes/química , Tartrazina , Casca de Ovo/química , Ecossistema , Purificação da Água/métodos , Indicadores e Reagentes , Decídua/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
2.
J Food Sci Technol ; 61(7): 1374-1382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38910918

RESUMO

Date palm (Phoenix dactylifera L.) is the most commonly cultivated fruit tree in the Middle East and North Africa. Date fruits are an excellent source of nutrition due to their high sugar content and high levels of phenols, minerals, and antioxidants. This work aimed to prepare a soluble natural sweetener from date fruit extract using colloidal gas aprons (CGAs) generated with a food-grade non-ionic surfactant (Tween 20). Various process parameters, such as the flow rate of the CGAs, the volume of the feed, the temperature of the CGAs, and the feed solution, were varied to obtain the optimal parameters. In the foam phase, the maximum soluble sugar enrichment of 92% was obtained at a flow rate of 50 mL/min of CGA and a solution temperature of 23 °C. The formation of intermolecular hydrogen bonding between the glucose molecules and the surfactant Tween 20 was confirmed by molecular modeling studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05907-9.

3.
Crit Rev Biotechnol ; 43(7): 971-981, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35968911

RESUMO

Colloidal gas aphrons (CGAs) are highly stable, spherical, micrometer-sized bubbles encapsulated by surfactant multilayers. They have several intriguing properties, including: high stability, large interfacial area, and the ability to maintain the same charge as their parent molecules. The physical properties of CGAs make them ideal for biotechnological applications such as the recovery of a variety of: biomolecules, particularly proteins, yeast, enzymes, and microalgae. In this review, the bio-application of CGAs for the recovery of natural components is presented, as well as: experimental results, technical challenges, and critical research directions for the future. Experimental results from the literature showed that the recovery of biomolecules was mainly determined by electrostatic or hydrophobic interactions between polyphenols and proteins (lysozyme, ß-casein, ß-lactoglobulin, etc.), yeast, biological molecules (gallic acid and norbixin), and microalgae with CGAs. Knowledge transfer is essential for commercializing CGA-based bio-product recovery, which will be recognized as a viable technology in the future.


Assuntos
Microbolhas , Saccharomyces cerevisiae , Tensoativos/química , Proteínas , Biotecnologia , Nucleotidiltransferases
4.
Environ Res ; 222: 115280, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657593

RESUMO

In recent years, photoelectrocatalysis of gold nanoparticles (Au NPs) has received considerable attention due to their potential to improve catalytic efficiency. Herein, ultra-small Au NPs were successfully synthesized in a single pot using olea europea leaf extract as a green reducing agent for the degradation of 4-nitrophenol. The TEM images showed uniform distribution and spherical shape of Au NPs with an average diameter of 5 nm. Taking advantage of the ability of Au nanoparticles to absorb visible and near-infrared light, 4-nitrophenol can be successfully reduced in the presence of NaBH4. Additionally, the electrochemical activity of the fabricated Au photocathode was investigated by linear sweep voltammetry in the dark and at VIS-NIR light irradiation. This showed an increased photocurrent density of 27 mA cm-2 with an onset potential of -0.71 V. This indicates that the Au photocathode is highly active at VIS-NIR light. Interestingly, the Au photocathode showed a higher current density of 37 mA cm-2 with an onset potential of -0.6 V in the presence of 4-nitrophenol during VIS-NIR irradiation, indicating that 4-nitrophenol was efficiently reduced by the photocathode. The Au photocathode completely reduced 4-nitrophenol in the wastewater within 35 min. Recyclability studies showed that the Au NPs photocathode exhibited higher stability over multiple cycles, confirming the ability of the electrode to treat wastewater over a longer period of time. This study demonstrates the effectiveness of the photoelectrochemical (PEC) process in reducing organic compounds in wastewater.


Assuntos
Nanopartículas Metálicas , Olea , Nanopartículas Metálicas/química , Ouro/química , Águas Residuárias
5.
Environ Res ; 235: 116610, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437872

RESUMO

Textile and pharmaceutical effluents contain significant amounts of dyes and antibiotics, which pose a serious threat to the ecosystem when discharged directly. Therefore, they should be treated by facile treatment techniques using low-cost materials. Layered double hydroxide (LDH) and its hybrids have emerged as robust and economic adsorbents for water treatment. Herein, magnesium/aluminum LDH and its starch-based composite were synthesized by a co-precipitation technique. The physicochemical features of the developed adsorbents were thoroughly characterized using various analytical tools. The developed materials were tested for the eradication of methylene blue (MB) and amoxicillin (AMX) in batch mode adsorption by varying operating conditions. Adsorption performance depends on the solution's pH. Under optimum adsorption conditions of pH 11, adsorbent dosage of 50 mg/L, and treatment time of 120 min, starch-impregnated MgAl-LDH exhibited maximum MB and AMX adsorption capacities of 114.94 and 48.08 mg/g, respectively. The adsorption mechanism states that hydrogen bonds and weak van der Waals forces are responsible for the removal of pollutants by the developed materials. Moreover, equilibrium and kinetic studies revealed that the removal of dye and antibiotic followed the Freundlich and Langmuir models with the pseudo-second-order reaction kinetics, respectively. The spent adsorbents were regenerated using 0.1 M HCl (for MB) and methanol (for AMX) eluent, and reusability studies ensured that the developed adsorbents retained their performance for up to four consecutive adsorption/desorption cycles. MgAl-LDH and its starch-based hybrid could thus be used to effectively remove organic contaminants from wastewater streams on a commercial scale.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Cinética , Azul de Metileno/química , Adsorção , Amoxicilina , Ecossistema , Poluentes Químicos da Água/química , Hidróxidos/química , Corantes , Antibacterianos , Concentração de Íons de Hidrogênio
6.
Chem Eng J ; 453: 139750, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36267422

RESUMO

Quantitative RT-PCR (qRT-PCR) is the most commonly used diagnostic tool for SARS-CoV-2 detection during the COVID-19 pandemic. Despite its sensitivity and accuracy, qRT-PCR is a time-consuming method that requires expensive laboratories with highly trained personnel. In this work, on-site detection of SARS-CoV-2 in municipal wastewater was investigated for the first time. The wastewater was unprocessed and did not require any prefiltration, prior spiking with virus, or viral concentration in order to be suitable for use with the biosensor. The prototype reported here is a reduced graphene oxide (rGO)-based biosensor for rapid, sensitive and selective detection of SARS-CoV-2. The biosensor achieved a limit of detection (LOD) of 0.5 fg/mL in phosphate-buffered saline (PBS) and exhibited specificity when exposed to various analytes. The response time was measured to be around 240 ms. To further explore the capabilities of the biosensor in real clinical and municipal wastewater samples, three different tests were performed to determine the presence or absence of the virus: (i) qRT-PCR, (ii) a rapid antigen-based commercially available test (COVID-19 Test Strips), and (iii) the biosensor constructed and reported here. Taken together, our results demonstrate that a biosensor that can detect SARS-CoV-2 in clinical samples as well as unfiltered and unprocessed municipal wastewater is feasible.

7.
Environ Res ; 204(Pt B): 112047, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34529967

RESUMO

Development of novel bionanomaterials for water and wastewater treatment has gained increased attraction and attention in recent times. The present study reports an effective biocomposite-based nano-photocatalyst comprised of nanochitosan (NCS), carboxymethyl cellulose (CMC), and titanium dioxide (TiO2) synthesized by sol-gel technique. The as-prepared NCS/CMC/TiO2 photocatalyst was systematically characterized by X-ray diffraction, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy with energy dispersive X-beam spectroscopy, Differential scanning calorimetry (DSC), and Thermogravimetric analysis (TGA). Photocatalytic degradation of the crystal violet (CV) dye using this nano photocatalyst was studied by varying the irradiation time, catalyst dosage, feed pH, and initial dye concentration. Further, the kinetic analysis of dye degradation was explored using the Langmuir-Hinshelwood model, and a plausible photocatalytic mechanism was proposed. The modification of TiO2 using NCS and CMC accelerated photocurrent transport by increasing the number of photogenerated electrons and holes. Overall, the study indicated the excellent photocatalytic performance of 95% CV dye degradation by NCS/CMC/TiO2 than the bare inorganic TiO2 photocatalyst under visible light irradiation.


Assuntos
Carboximetilcelulose Sódica , Violeta Genciana , Catálise , Cinética , Luz , Titânio , Difração de Raios X
8.
Environ Res ; 204(Pt D): 112390, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34838760

RESUMO

In recent years, bimetallic oxide nanoparticles have garnered significant attention owing to their salient advantages over monometallic nanoparticles. In this study, Fe2O3-Mn2O3 nanoparticles were synthesized and used as nanomodifiers for polyethersulfone (PES) ultrafiltration membranes. A NIPS was used to fabricate asymmetric membranes. The effect of nanoparticle concentration (0-1 wt.%) on the morphology, roughness, wettability, porosity, permeability, and protein filtration performance of the membranes was investigated. The membrane containing 0.25 wt% nanoparticles exhibited the lowest water contact angle (67°) and surface roughness (10.4 ± 2.8 nm) compared to the other membranes. Moreover, this membrane exhibited the highest porosity (74%) and the highest pure water flux (398 L/m2 h), which was 16% and 1.9 times higher than that of the pristine PES membrane. The modified PES membranes showed an improved antifouling ability, especially against irreversible fouling. Bovine serum albumin protein-based dynamic five-cycle filtration tests showed a maximum flux recovery ratio of 77% (cycle-1), 67% (cycle-2), and 65.8% (cycle-5) for the PES membrane containing 0.25 wt% nanoparticles. Overall, the biphasic Fe2O3-Mn2O3 nanoparticles were found to be an effective nanomodifier for improving the permeability and antifouling ability of PES membranes in protein separation and water treatment applications.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Óxidos , Permeabilidade , Polímeros , Sulfonas
9.
Environ Res ; 204(Pt B): 112113, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34563528

RESUMO

Nanomodification of ultrafiltration (UF) membranes has been shown to be a simple and efficient technique for the preparation of high-performance membranes. In this work, an iron oxide functionalized halloysite nanoclay (Fe-HNC) nanocomposite was prepared and used as a nanofiller for polyethersulfone (PES) membranes. The effect of Fe-HNC concentration on the filtration performance of the membrane was investigated by varying the nanocomposite dosage (0-0.5 wt %) in the casting dope. Various characterization studies showed that the incorporation of Fe-HNC nanocomposites improved the membrane morphology and enhanced the surface properties, thermal stability, mechanical strength, hydrophilicity, and porosity. The permeability to pure water and filtration of humic acid (HA) were significantly improved by incorporating Fe-HNC into the PES membranes. The membrane with Fe-HNC loading of 0.1 wt % exhibited the highest pure water permeability (174.3 L/(m2 h bar)) and removal of HA (90.1 %), which were 1.8 times and 29 % higher, respectively than the pristine PES membrane. Moreover, fouling studies showed the enhanced antifouling ability of the Fe-HNC nanocomposites modified PES membranes, especially against irreversible fouling. Continuous membrane regeneration-based fouling removal studies from HA showed that the PES/0.1 wt % Fe-HNC membrane exhibited a high fouling recovery of 70.4 % with very low reversible and irreversible fouling resistance of 9.61 % and 14.78 %, respectively, compared to the pristine PES membrane (fouling recovery: 40.4 %; reversible fouling: 21.7 %; irreversible fouling: 20.1 %). Overall, the Fe-HNC nanocomposite proved to be an effective nanomodifier for improving the permeability of PES membranes and the antifouling ability to treat HA polluted aqueous streams.


Assuntos
Substâncias Húmicas , Nanocompostos , Argila , Compostos Férricos , Substâncias Húmicas/análise , Membranas Artificiais , Polímeros , Sulfonas
10.
J Environ Manage ; 317: 115367, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35636111

RESUMO

Two-dimensional (2D) lamellar graphene oxide (GO) membranes are emerging as attractive materials for molecular separation in water treatment because of their single atomic thickness, excellent hydrophilicity, large specific surface areas, and controllable properties. To yet, commercialization of GO laminar membranes has been hindered by their propensity to swell in hydrated conditions. Thus, chemical crosslinking of GO sheets with the polymer matrix is used to improve GO membrane hydration stability. This review focuses on pertinent themes such as how chemical crosslinking improves the hydration stability, separation performance, and antifouling properties of GO membranes.


Assuntos
Grafite , Purificação da Água , Grafite/química , Membranas Artificiais , Polímeros/química , Purificação da Água/métodos
11.
Environ Res ; 196: 110429, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33171121

RESUMO

A facile hydrothermal assisted in-situ precipitation technique was employed for synthesizing highly efficient porous graphitic carbon/manganese dioxide (PGC/MnO2) nanocomposite adsorbent using calcium alginate as carbon precursor. Morphological and structural characterization using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction techniques confirmed the interconnected nanoporous architecture and birnessite (δ) MnO2 polymorph evenly distributed on the PGC structure. The synergistic effect of PGC and MnO2 was exploited for enhanced sulfide removal from wastewater via adsorptive oxidation. The effect of different experimental parameters, including solution pH, initial sulfide concentration, adsorbent dosage, and contact time on removal efficiency was investigated. The equilibrium and kinetic data for sulfide adsorption by PGC/MnO2 nanocomposite fitted well with Langmuir isotherm and pseudo-second-order kinetic model, respectively. The maximum uptake capacity of sulfide by the nanocomposite was determined as 500 mg/g with complete sulfide removal. Further, it was estimated that a typical field application using the synthesized nanocomposite adsorbent would require 0.5-1 g/L per 200 mg/L of sulfide contaminated wastewater. Based on the experimental results, a schematic of the adsorptive oxidation mechanism of PGC/MnO2 nanocomposite is proposed.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Carbono , Concentração de Íons de Hidrogênio , Cinética , Compostos de Manganês , Óxidos , Porosidade , Sulfetos , Águas Residuárias , Poluentes Químicos da Água/análise
12.
Environ Res ; 197: 111110, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864793

RESUMO

Capacitive deionization (CDI) is an evolving technology for eradicating salt and toxic heavy metal ions from brackish wastewater. However, traditional CDI electrodes have lower salt adsorption capacity and inadequate adsorption of selective metal ions for long-term operations. Herein, Ag nanospheres incorporated pomegranate peel-derived activated carbon (Ag/P-AC) was prepared and implied to the CDI process for removing NaCl, toxic mono-, di-, and trivalent metal ions. Morphological analysis revealed that the 80-100 nm-sized Ag nanospheres were uniformly decorated on the surfaces of P-AC nanosheets. The Ag/P-AC has a higher specific surface area (640 m2 g-1), superior specific capacitance (180 F g-1 at 50 mV s-1) and a lower charge transfer resistance (0.5 Ω cm2). CDI device was fabricated by Ag/P-AC as an anode, which adsorbed anions and P-AC as cathode for adsorption of positively charged ions at 1.2 V in an initial salt concentration of 1000 mg L-1. An asymmetric Ag/P-AC//P-AC exhibited a maximum NaCl adsorption capacity of 36 mg g-1 than symmetric P-AC//P-AC electrodes (22.7 mg g-1). Furthermore, Pb(II), Cd(II), F-, and As(III) ions were successfully removed from simulated wastewater by using Ag/P-AC//P-AC based CDI system. These asymmetric CDI-electrodes have an excellent prospect for the removal of salt and toxic contaminants in industrial wastewater.


Assuntos
Nanosferas , Punica granatum , Purificação da Água , Carvão Vegetal , Eletrodos , Íons , Prata , Cloreto de Sódio
13.
Environ Res ; 200: 111428, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107284

RESUMO

Atrazine is a toxic herbicide whose alarming rate of contamination in the drinking water and wastewater poses a severe threat to the environment and human health. Here in this study, the graphene oxide (GO) nanosheets were prepared using Hummers' method with minor modification and studied as a potential adsorbent for atrazine removal from simulated wastewater. The spectroscopy and microscopic analysis confirmed the successful formation of GO with a multilayer structure resembling the crumpled sheets with random stacking. The Response Surface Methodology (RSM) employing Box Behnken design (BBD) was successfully developed to predict the optimal conditions for maximal atrazine removal as adsorbent dosage 121.45 mg/L; initial feed concentration 27.03 mg/L; temperature 27.69 °C, pH 5.37, and time 180 min. The atrazine adsorption onto GO was found to be higher in acidic pH and lower temperature. Density functional theory (DFT) calculation of adsorbent-adsorbate complex in the implicit solvent medium suggests adsorption affinity energy of -24.4 kcal/mol for atrazine. A careful observation of the molecules configuration and binding energy showed that the π-π interactions and hydrogen bonds played a significant role in the adsorption phenomena. Langmuir isotherm suited well to the adsorption process with a maximum adsorption capacity of 138.19 mg/g, at 318 K. The fitness of kinetic models for atrazine adsorption onto GO nanosheets were in following order Ho < Sobkowsk-Czerwi < Avrami model based on their correlation coefficient (R2) values. Reusability analysis showed that GO nanosheets could be effectively recycled using 0.01 N NaOH up to six cycles of atrazine removal. Thus, this study provided a theoretical and experimental basis for the potential application of GO nanosheets as a novel adsorbent for the removal of hazardous atrazine.


Assuntos
Atrazina , Poluentes Químicos da Água , Adsorção , Teoria da Densidade Funcional , Grafite , Humanos , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
14.
J Environ Manage ; 293: 112925, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289593

RESUMO

The development of membrane technology has proved vital in providing a sustainable and affordable supply of clean water to address the ever-increasing demand. Though liquid separation applications have been still dominated by polymeric membranes, porous ceramic membranes have gained a commercial foothold in microfiltration (MF) and ultrafiltration (UF) applications due to their hydrophilic nature, lower fouling, ease of cleaning, reliable performance, robust performance with harsh feeds, relative insensitivity to temperature and pH, and stable long-term flux. The enrichment of research and development on porous ceramic membranes extends its focus into advanced membrane separation technologies. The latest emerging nanofiltration (NF) and membrane distillation (MD) applications have witnessed special interests in constructing porous membrane with hydrophilic/functional/hydrophobic properties. However, NF and MD are relatively new, and many shortcomings must be addressed to compete with their polymeric counterparts. For the last three years (2018-2020), state-of-the-art literature on porous ceramic membranes has been collected and critically reviewed. This review highlights the efficiency (permeability, selectivity, and antifouling) of hydrophilic porous ceramic membranes in a wide variety of wastewater treatment applications and hydrophobic porous ceramic membranes in membrane distillation-based desalination applications. A significant focus on pores characteristics, pore sieving phenomenon, nano functionalization, and synergic effect on fouling, the hydrophilic porous ceramic membrane has been discussed. In another part of this review, the role of surface hydrophobicity, water contact angle, liquid entry pressure (LEP), thermal properties, surface micro-roughness, etc., has been discussed for different types of hydrophobic porous ceramic membranes -(a) metal-based, (b) silica-based, (c) other ceramics. Also, this review highlights the potential benefits, drawbacks, and limitations of the porous membrane in applications. Moreover, the prospects are emphasized to overcome the challenges in the field.


Assuntos
Membranas Artificiais , Purificação da Água , Cerâmica , Porosidade , Ultrafiltração
15.
Environ Res ; 187: 109694, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32485359

RESUMO

Biosorption ability of date palm empty fruit bunch (DPEFB) was examined for the removal of toxic hexavalent chromium (Cr6+) ions from synthetic wastewater. The pretreated DPEFB biosorbent was studied for its morphology and surface chemistry through Scanning electron microscopy, Energy dispersive elemental analysis and Fourier transform infrared spectroscopy. Effect of biosorption parameters such as pH, biosorbent dosage, contact time, temperature, initial feed concentration and agitation speed on the Cr6+ ions removal efficiency by DPEFB was critically evaluated. The isoelectric point for the DPEFB sorbent was observed at pH 2, above which it was dehydronated to capture the positively charged Cr6+ ions. Batch biosorption studies showed that an optimal chromium removal efficiency of 58.02% was recorded by the DPEFB biosorbent for pH 2, dosage 0.3 g, 100 rpm agitation speed, 120 min contact time, 50 mg/L initial feed concentration and 30 °C operational temperature. Thermodynamic analysis showed that the binding of Cr6+ ions on DPEFB surface was exothermic, stable and favorable at room temperature. Equilibrium behavior of chromium binding on DPEFB was more aligned to Temkin isotherm (R2 = 0.9852) highlighting the indirect interactions between Cr6+ ions and the biosorbent. Kinetic modeling revealed that the biosorption of Cr6+ ions by DPEFB obeyed pseudo-second order model than the pseudo-first order and intra-particle diffusion models. Reusability studies of the DPEFB sorbent showed that NaNO3 was an effective regenerant and the biosorbent can be efficiently reused up to three successive biosorption-desorption cycles for chromium removal. In summary, the results clearly showed that the DPEFB biowaste seems to be an efficient, economic and eco-friendly biosorbent for sustainable removal of toxic hexavalent chromium ions from domestic and industrial wastewater streams.


Assuntos
Phoeniceae , Poluentes Químicos da Água , Adsorção , Cromo/análise , Cromo/toxicidade , Frutas/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Water Sci Technol ; 81(7): 1354-1364, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32616688

RESUMO

The treatment of oily wastewater continues to pose a challenge in industries worldwide. Membranes have been investigated recently for their use in oily wastewater treatment due to their efficiency and relatively facile operational process. Graphene oxide (GO) and silica (SiO2) nanoparticles have been found to improve membrane properties. In this study, a polyethersulfone (PES) based GO-SiO2 mixed matrix membrane (MMM) was fabricated, using the phase inversion technique, for the treatment of oil refinery wastewater. The PES/GO-SiO2 membrane exhibited the highest water flux (2,561 LMH) and a 38% increase in oil removal efficiency by comparison to a PES membrane. Compared to PES/GO and PES/SiO2 membranes, the PES/GO-SiO2 MMM also displayed the best overall properties in terms of tensile strength, water permeability, and hydrophilicity.


Assuntos
Dióxido de Silício , Águas Residuárias , Grafite , Membranas Artificiais , Polímeros , Sulfonas
17.
Langmuir ; 35(6): 2343-2357, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30626190

RESUMO

Halloysite nanotubes (HNTs) were assembled into mesoporous/macroporous microparticles (c-g-HNTs MPs) using Pickering template-assisted approach. To unravel the stabilization mechanism in Pickering emulsion form, several emulsions and microparticles were prepared at various conditions and visualized using confocal laser scanning microscopy. The prepared c-g-HNTs MPs were used to treat emulsified oil solutions resulting in a maximum removal efficiency of 94.47%. The kinetics data of oil adsorption onto c-g-HNTs MPs was best fitted by the pseudo-second-order kinetic model ( R2 = 0.9983). The maximum monolayer adsorption capacity of oil onto c-g-HNTs MPs as predicted by the multilayer Brunauer-Emmett-Teller model was found to be 788 mg/g. Compared with pristine HNTs, c-g-HNTs MPs exhibited higher self-settleability rates in aqueous solutions as well as in emulsified oil solutions, demonstrating their candidacy for practical water treatment applications. The c-g-HNTs MPs were repeatedly used for five adsorption-desorption cycles with minimal losses noticed in their performance.

18.
J Chem Eng Data ; 63(4): 913-919, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29977093

RESUMO

The solubility of CO2 in hydrophobic deep eutectic solvents (DESs) has been measured for the first time. Six different hydrophobic DESs are studied in the temperature range from 298 to 323 K and at CO2 pressures up to 2 MPa. The results are evaluated by comparing the solubility data with existing hydrophilic DESs and currently applied physical solvents and fluorinated ionic liquids. The DESs are prepared by mixing decanoic acid with a quaternary ammonium salt with different halide anions and alkyl chain lengths. The measured CO2 solubilities are similar to those found in renowned fluorinated ILs, while the heats of CO2 absorption are in the range of nonpolar solvents. The presented DESs show good potential to be used as CO2 capture agents.

19.
Chemosphere ; 349: 140801, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029934

RESUMO

Wastewater treatment technologies have been developed to address the health and environmental risks associated with toxic and cancer-causing dyes and heavy metals found in industrial waste. The most commonly used method to mitigate and treat such effluents is adsorption, which is favored for its high efficiency, low costs, and ease of operation. However, traditional adsorbents have limitations in terms of regeneration and selectivity compared to smart adsorbents. Smart polymeric adsorbents, on the other hand, can undergo physical and chemical changes in response to external factors like temperature and pH, enabling a selective adsorption process. These adsorbents can be easily regenerated and reused with minimal generation of secondary pollutants during desorption. The unique properties acquired by stimuli-responsive adsorbents have encouraged researchers to investigate their potential for the selective and efficient removal of organic dyes and heavy metals. This comprehensive review focuses on two common stimuli, pH and temperature, discussing the fabrication methods and characteristics of smart adsorbents responsive to these factors. It also provides an overview of the mechanisms, isotherms, kinetics, and thermodynamics of the adsorption process for each type of stimuli-responsive adsorbent. Finally, the review concludes with discussions on future perspectives and considerations.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Temperatura , Adsorção , Termodinâmica , Corantes , Polímeros , Cinética , Purificação da Água/métodos , Concentração de Íons de Hidrogênio
20.
Food Chem ; 454: 139619, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38811285

RESUMO

In this study, we developed a hydrogel from cross-linked keratin and chitosan (KC) to remove patulin (PAT) from apple juice. We explored the potential of incorporating Lactobacillus rhamnoses into the KC hydrogel (KC-LR) and tested its effectiveness in removing PAT from simulated juice solutions and real apple juice. The KC hydrogel was developed through a dynamic disulfide cross-linking reaction. This cross-linked hydrogel network provided excellent stability for the probiotic cells, achieving 99.9 % immobilization efficiency. In simulated juice with 25 mg/L PAT, the KC and KC-LR hydrogels showed removal efficiencies of 85.2 % and 97.68 %, respectively, using 15 mg mL-1 of the prepared hydrogel at a temperature of 25 °C for 6 h. The KC and KC-LR hydrogels achieved 76.3 % and 83.6 % removal efficiencies in real apple juice systems, respectively. Notably, the encapsulated probiotics did not negatively impact the juice quality and demonstrated reusability for up to five cycles of the PAT removal process.


Assuntos
Quitosana , Sucos de Frutas e Vegetais , Hidrogéis , Queratinas , Lacticaseibacillus rhamnosus , Malus , Patulina , Quitosana/química , Malus/química , Sucos de Frutas e Vegetais/análise , Lacticaseibacillus rhamnosus/química , Hidrogéis/química , Patulina/química , Patulina/isolamento & purificação , Queratinas/química , Queratinas/isolamento & purificação , Probióticos/química , Contaminação de Alimentos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA