Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(1): e0175222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36519869

RESUMO

Traditional antibiotics target essential cellular components or metabolic pathways conserved in both pathogenic and nonpathogenic bacteria. Unfortunately, long-term antibiotic use often leads to antibiotic resistance and disruption of the overall microbiota. In this work, we identified a phenylamino acetamide compound, named 187R, that strongly inhibited the expression of the type III secretion system (T3SS) encoding genes and the secretion of the T3SS effector proteins in Pseudomonas aeruginosa. T3SS is an important virulence factor, as T3SS-deficient strains of P. aeruginosa are greatly attenuated in virulence. We further showed that 187R had no effect on bacterial growth, implying a reduced selective pressure for the development of resistance. 187R-mediated repression of T3SS was dependent on ExsA, the master regulator of T3SS in P. aeruginosa. The impact of 187R on the host-associated microbial community was also tested using the Arabidopsis thaliana phyllosphere as a model. Both culture-independent (Illumina sequencing) and culture-dependent (Biolog) methods showed that the application of 187R had little impact on the composition and function of microbial community compared to the antibiotic streptomycin. Together, these results suggested that compounds that target virulence factors could serve as an alternative strategy for disease management caused by bacterial pathogens. IMPORTANCE New antimicrobial therapies are urgently needed, since antibiotic resistance in human pathogens has become one of the world's most urgent public health problems. Antivirulence therapy has been considered a promising alternative for the management of infectious diseases, as antivirulence compounds target only the virulence factors instead of the growth of bacteria, and they are therefore unlikely to affect commensal microorganisms. However, the impacts of antivirulence compounds on the host microbiota are not well understood. We report a potent synthetic inhibitor of the P. aeruginosa T3SS, 187R, and its effect on the host microbiota of Arabidopsis. Both culture-independent (Illumina sequencing) and culture-dependent (Biolog) methods showed that the impacts of the antivirulence compound on the composition and function of host microbiota were limited. These results suggest that antivirulence compounds can be a potential alternative method to antibiotics.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Sistemas de Secreção Tipo III , Fatores de Virulência , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética , Virulência/fisiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Microbiol Spectr ; 11(6): e0153723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811940

RESUMO

IMPORTANCE: Bacteria respond to environmental changes and adapt to host systems. The response regulator VfmH of the Vfm quorum sensing system regulates a crucial virulence factor, pectate lyase (Pel), in Dickeya dadantii. At high c-di-GMP concentrations, VfmH binds c-di-GMP, resulting in the loss of its activation property in the Pel and virulence regulation in D. dadantii. VfmH binds to c-di-GMP via three conserved arginine residues, and mutations of these residues eliminate the c-di-GMP-related phenotypes of VfmH in Pel synthesis. Our data also show that VfmH interacts with CRP to regulate pelD transcription, thus integrating cyclic AMP and c-di-GMP signaling pathways to control virulence in D. dadantii. We propose that VfmH is an important intermediate factor incorporating quorum sensing and nucleotide signaling pathways for the collective regulation of D. dadantii pathogenesis.


Assuntos
Proteínas de Bactérias , Enterobacteriaceae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterobacteriaceae/genética , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Mol Plant Pathol ; 23(8): 1187-1199, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460168

RESUMO

Bacteria use signal transduction systems to sense and respond to their external environment. The two-component system CpxA/CpxR senses misfolded envelope protein stress and responds by up-regulating envelope protein factors and down-regulating virulence factors in several animal pathogens. Dickeya dadantii is a phytopathogen equipped with a type III secretion system (T3SS) for manipulating the host immune response. We found that deletion of cpxR enhanced the expression of the T3SS marker gene hrpA in a designated T3SS-inducing minimal medium (MM). In the ∆cpxR mutant, multiple T3SS and c-di-GMP regulators were also up-regulated. Subsequent analysis revealed that deletion of the phosphodiesterase gene egcpB in ∆cpxR abolished the enhanced T3SS expression. This suggested that CpxR suppresses EGcpB levels, causing low T3SS expression in MM. Furthermore, we found that the ∆cpxR mutant displayed low c-di-GMP phenotypes in biofilm formation and swimming. Increased production of cellular c-di-GMP by in trans expression of the diguanylate cyclase gene gcpA was negated in the ∆cpxR mutant. Here, we propose that CpxA/CpxR regulates T3SS expression by manipulating the c-di-GMP network, in turn modifying the multiple physiological activities involved in the response to environmental stresses in D. dadantii.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Dickeya , Enterobacteriaceae , Virulência/genética
4.
Microbiol Spectr ; 10(2): e0180521, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35352959

RESUMO

Dickeya dadantii is a phytopathogenic bacterium that causes diseases on a wide range of host plants. The pathogen secretes pectate lyases (Pel) through the type II secretion system (T2SS) that degrades the cell wall in host plants. The virulence of D. dadantii is controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP), and the homeostasis of c-di-GMP is maintained by a number of diguanylate cyclases and phosphodiesterases. Deletion of a phosphodiesterase ecpC repressed pelD transcription, and such repression can be suppressed by an additional deletion in vfmE. VfmE is an AraC type of transcriptional regulator in the Vfm quorum-sensing system. Our results suggest that VfmE is a c-di-GMP effector that functions as an activator of pel at low c-di-GMP concentrations and a repressor of pel at high c-di-GMP concentrations through regulation of the transcriptional activator SlyA. Multiple sequence alignment with known c-di-GMP effectors identified an RWIWR motif in VfmE that we demonstrate is required for the c-di-GMP binding. Mutation of R93D in the RxxxR motif eliminates the c-di-GMP-related phenotypes in Pel activity. Our results show that VfmE is not only a quorum-sensing regulator but also a c-di-GMP effector, suggesting that D. dadantii integrates the c-di-GMP signaling network with the Vfm quorum-sensing pathway during environmental adaptation. IMPORTANCE How bacteria integrate environmental cues from multiple sources to appropriately regulate adaptive phenotypes is a central question in microbiology. In Dickeya dadantii, the quorum-sensing regulator VfmE controls the key virulence factor pectate lyase (Pel). Here, we demonstrate that VfmE also binds to c-di-GMP, resulting in VfmE functioning as an activator of pel at low c-di-GMP concentrations and repressor of pel at high c-di-GMP concentrations. The RWIWR motif in VfmE is required for c-di-GMP binding, and mutation of the motif in the mutant R93D eliminates the c-di-GMP-related phenotypes in Pel activity. We propose that VfmE is an important mediator to integrate quorum-sensing signals with c-di-GMP to collectively regulate D. dadantii pathogenesis.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Dickeya , Enterobacteriaceae/metabolismo , Polissacarídeo-Liases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA