Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(9): e1010962, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733787

RESUMO

Evolutionarily conserved genes often play critical roles in organismal physiology. Here, we describe multiple roles of a previously uncharacterized Class III metallophosphodiesterase in Drosophila, an ortholog of the MPPED1 and MPPED2 proteins expressed in the mammalian brain. dMpped, the product of CG16717, hydrolyzed phosphodiester substrates including cAMP and cGMP in a metal-dependent manner. dMpped is expressed during development and in the adult fly. RNA-seq analysis of dMppedKO flies revealed misregulation of innate immune pathways. dMppedKO flies showed a reduced lifespan, which could be restored in Dredd hypomorphs, indicating that excessive production of antimicrobial peptides contributed to reduced longevity. Elevated levels of cAMP and cGMP in the brain of dMppedKO flies was restored on neuronal expression of dMpped, with a concomitant reduction in levels of antimicrobial peptides and restoration of normal life span. We observed that dMpped is expressed in the antennal lobe in the fly brain. dMppedKO flies showed defective specific attractant perception and desiccation sensitivity, correlated with the overexpression of Obp28 and Obp59 in knock-out flies. Importantly, neuronal expression of mammalian MPPED2 restored lifespan in dMppedKO flies. This is the first description of the pleiotropic roles of an evolutionarily conserved metallophosphodiesterase that may moonlight in diverse signaling pathways in an organism.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Longevidade/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Odorantes , Peptídeos Antimicrobianos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mamíferos/metabolismo
2.
IUBMB Life ; 72(6): 1145-1159, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293781

RESUMO

Guanylyl cyclase C (GC-C) is the receptor for the heat-stable enterotoxin, which causes diarrhea, and the endogenous ligands, guanylin and uroguanylin. GC-C is predominantly expressed in the intestinal epithelium and regulates fluid and ion secretion in the gut. The receptor has a complex domain organization, and in the absence of structural information, mutational analysis provides clues to mechanisms of regulation of this protein. Here, we review the mutational landscape of this receptor that reveals regulatory features critical for its activity. We also summarize the available information on mutations in GC-C that have been reported in humans and contribute to severe gastrointestinal abnormalities. Since GC-C is also expressed in extra-intestinal tissues, it is likely that mutations thus far reported in humans may also affect other organ systems, warranting a close observation of these patients in future.


Assuntos
Íleo Meconial/genética , Mutação , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Regulação Alostérica , Humanos , Domínios Proteicos , Receptores de Enterotoxina/química , Transdução de Sinais
3.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810249

RESUMO

Helicobacter pylori colonization of the gastric niche can persist for years in asymptomatic individuals. To deeply characterize the host-microbiota environment in H. pylori-infected (HPI) stomachs, we collected human gastric tissues and performed metagenomic sequencing, single-cell RNA-Seq (scRNA-Seq), flow cytometry, and fluorescent microscopy. HPI asymptomatic individuals had dramatic changes in the composition of gastric microbiome and immune cells compared with noninfected individuals. Metagenomic analysis uncovered pathway alterations related to metabolism and immune response. scRNA-Seq and flow cytometry data revealed that, in contrast to murine stomachs, ILC2s are virtually absent in the human gastric mucosa, whereas ILC3s are the dominant population. Specifically, proportion of NKp44+ ILC3s out of total ILCs were highly increased in the gastric mucosa of asymptomatic HPI individuals, and correlated with the abundance of selected microbial taxa. In addition, CD11c+ myeloid cells and activated CD4+ T cells and B cells were expanded in HPI individuals. B cells of HPI individuals acquired an activated phenotype and progressed into a highly proliferating germinal-center stage and plasmablast maturation, which correlated with the presence of tertiary lymphoid structures within the gastric lamina propria. Our study provides a comprehensive atlas of the gastric mucosa-associated microbiome and immune cell landscape when comparing asymptomatic HPI and uninfected individuals.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Animais , Camundongos , Imunidade Inata , Análise da Expressão Gênica de Célula Única , Estômago , Mucosa Gástrica , Plasmócitos
4.
EBioMedicine ; 94: 104691, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37480626

RESUMO

BACKGROUND: Radiotherapy is effective in the treatment of cancer but also causes damage to non-cancerous tissue. Pelvic radiotherapy may produce chronic and debilitating bowel symptoms, yet the underlying pathophysiology is still undefined. Most notably, although pelvic radiotherapy causes an acute intestinal inflammation there is no consensus on whether the late-phase pathophysiology contains an inflammatory component or not. To address this knowledge gap, we examined the potential presence of a chronic inflammation in mucosal biopsies from irradiated pelvic cancer survivors. METHODS: We biopsied 24 cancer survivors two to 20 years after pelvic radiotherapy, and four non-irradiated controls. Using tandem mass tag (TMT) mass spectrometry and mRNA sequencing (mRNA-seq), we charted proteomic and transcriptomic profiles of the mucosal tissue previously exposed to a high or a low/no dose of radiation. Changes in the immune cell populations were determined with flow cytometry. The integrity of the protective mucus layers were determined by permeability analysis and 16S rRNA bacterial detection. FINDINGS: 942 proteins were differentially expressed in mucosa previously exposed to a high radiation dose compared to a low radiation dose. The data suggested a chronic low-grade inflammation with neutrophil activity, which was confirmed by mRNA-seq and flow cytometry and further supported by findings of a weakened mucus barrier with bacterial infiltration. INTERPRETATION: Our results challenge the idea that pelvic radiotherapy causes an acute intestinal inflammation that either heals or turns fibrotic without progression to chronic inflammation. This provides a rationale for exploring novel strategies to mitigate chronic bowel symptoms in pelvic cancer survivors. FUNDING: This study was supported by the King Gustav V Jubilee Clinic Cancer Foundation (CB), The Adlerbertska Research Foundation (CB), The Swedish Cancer Society (GS), The Swedish State under the ALF agreement (GS and CB), Mary von Sydow's foundation (MA and VP).

5.
Front Genet ; 13: 1058057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699452

RESUMO

Introduction: Hereditary pancreatitis (HP) is a rare debilitating disease with incompletely understood etio-pathophysiology. The reduced penetrance of genes such as PRSS1 associated with hereditary pancreatitis indicates a role for novel inherited factors. Methods: We performed whole-exome sequencing of three affected members of an Indian family (Father, Son, and Daughter) with chronic pancreatitis and compared variants with those seen in the unaffected mother. Results: We identified a novel frameshift mutation in exon 11 of TRPV6 (c.1474_1475delGT; p.V492Tfs*136), a calcium channel, in the patients. Functional characterization of this mutant TRPV6 following heterologous expression revealed that it was defective in calcium uptake. Induction of pancreatitis in mice induced Trpv6 expression, indicating that higher expression levels of the mutant protein and consequent dysregulation of calcium levels in patients with chronic pancreatitis could aggravate the disease. Discussion: We report a novel frameshift mutation in TRPV6 in an Indian family with HP that renders the mutant protein inactive. Our results emphasize the need to expand the list of genes used currently for evaluating patients with hereditary pancreatitis.

6.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546338

RESUMO

Activating mutations in receptor guanylyl cyclase C (GC-C), the target of gastrointestinal peptide hormones guanylin and uroguanylin, and bacterial heat-stable enterotoxins cause early-onset diarrhea and chronic inflammatory bowel disease (IBD). GC-C regulates ion and fluid secretion in the gut via cGMP production and activation of cGMP-dependent protein kinase II. We characterize a novel mouse model harboring an activating mutation in Gucy2c equivalent to that seen in an affected Norwegian family. Mutant mice demonstrated elevated intestinal cGMP levels and enhanced fecal water and sodium content. Basal and linaclotide-mediated small intestinal transit was higher in mutant mice, and they were more susceptible to DSS-induced colitis. Fecal microbiome and gene expression analyses of colonic tissue revealed dysbiosis, up-regulation of IFN-stimulated genes, and misregulation of genes associated with human IBD and animal models of colitis. This novel mouse model thus provides molecular insights into the multiple roles of intestinal epithelial cell cGMP, which culminate in dysbiosis and the induction of inflammation in the gut.


Assuntos
Colite/metabolismo , Colo/metabolismo , GMP Cíclico/metabolismo , Disbiose/metabolismo , Intestinos/metabolismo , Mutação/genética , Receptores de Enterotoxina/genética , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Modelos Animais de Doenças , Expressão Gênica/genética , Inflamação/genética , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Receptores de Enterotoxina/metabolismo , Transdução de Sinais/genética
7.
Mol Biosyst ; 13(10): 2044-2055, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28783193

RESUMO

The emergence of new protein-coding genes in a specific lineage or species provides raw materials for evolutionary adaptations. Until recently, the biology of new genes emerging particularly from non-genic sequences remained unexplored. Although the new genes are subjected to variable selection pressure and face rapid deletion, some of them become functional and are retained in the gene pool. To acquire functional novelties, new genes often get integrated into the pre-existing ancestral networks. However, the mechanism by which young proteins acquire novel interactions remains unanswered till date. Since structural orientation contributes hugely to the mode of proteins' physical interactions, in this regard, we put forward an interesting question - Do new genes encode proteins with stable folds? Addressing the question, we demonstrated that the intrinsic disorder inversely correlates with the evolutionary gene ages - i.e. young proteins are richer in intrinsic disorder than the ancient ones. We further noted that young proteins, which are initially poorly connected hubs, prefer to be structurally more disordered than well-connected ancient proteins. The phenomenon strikingly defies the usual trend of well-connected proteins being highly disordered in structure. We justified that structural disorder might help poorly connected young proteins to undergo promiscuous interactions, which provides the foundation for novel protein interactions. The study focuses on the evolutionary perspectives of young proteins in the light of structural adaptations.


Assuntos
Eucariotos/metabolismo , Proteínas/metabolismo , Animais , Biologia Computacional , Células Eucarióticas/metabolismo , Evolução Molecular , Humanos
8.
DNA Res ; 24(4): 435-444, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430886

RESUMO

Whereas the rate of gene duplication is relatively high, only certain duplications survive the filter of natural selection and can contribute to genome evolution. However, the reasons why certain genes can be retained after duplication whereas others cannot remain largely unknown. Many proteins contain intrinsically disordered regions (IDRs), whose structures fluctuate between alternative conformational states. Due to their high flexibility, IDRs often enable protein-protein interactions and are the target of post-translational modifications. Intrinsically disordered proteins (IDPs) have characteristics that might either stimulate or hamper the retention of their encoding genes after duplication. On the one hand, IDRs may enable functional diversification, thus promoting duplicate retention. On the other hand, increased IDP availability is expected to result in deleterious unspecific interactions. Here, we interrogate the proteomes of human, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana and Escherichia coli, in order to ascertain the impact of protein intrinsic disorder on gene duplicability. We show that, in general, proteins encoded by duplicated genes tend to be less disordered than those encoded by singletons. The only exception is proteins encoded by ohnologs, which tend to be more disordered than those encoded by singletons or genes resulting from small-scale duplications. Our results indicate that duplication of genes encoding IDPs outside the context of whole-genome duplication (WGD) is often deleterious, but that IDRs facilitate retention of duplicates in the context of WGD. We discuss the potential evolutionary implications of our results.


Assuntos
Eucariotos/genética , Evolução Molecular , Genes Duplicados , Genoma , Dobramento de Proteína , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Eucariotos/metabolismo , Humanos , Ploidias , Processamento de Proteína Pós-Traducional , Proteômica
9.
J Biomol Struct Dyn ; 35(2): 233-249, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26790343

RESUMO

Why the intrinsically disordered regions evolve within human proteome has became an interesting question for a decade. Till date, it remains an unsolved yet an intriguing issue to investigate why some of the disordered regions evolve rapidly while the rest are highly conserved across mammalian species. Identifying the key biological factors, responsible for the variation in the conservation rate of different disordered regions within the human proteome, may revisit the above issue. We emphasized that among the other biological features (multifunctionality, gene essentiality, protein connectivity, number of unique domains, gene expression level and expression breadth) considered in our study, the number of unique protein domains acts as a strong determinant that negatively influences the conservation of disordered regions. In this context, we justified that proteins having a fewer types of domains preferably need to conserve their disordered regions to enhance their structural flexibility which in turn will facilitate their molecular interactions. In contrast, the selection pressure acting on the stretches of disordered regions is not so strong in the case of multi-domains proteins. Therefore, we reasoned that the presence of conserved disordered stretches may compensate the functions of multiple domains within a single domain protein. Interestingly, we noticed that the influence of the unique domain number and expression level acts differently on the evolution of disordered regions from that of well-structured ones.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Domínios Proteicos , Proteínas/química , Sequência de Aminoácidos , Animais , Sequência Conservada , Bases de Dados de Proteínas , Evolução Molecular , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo , Seleção Genética , Transdução de Sinais
10.
J Biomol Struct Dyn ; 34(9): 1930-45, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26375894

RESUMO

An interaction between a pair of proteins unique for a particular tissue is denoted as a tissue-specific interaction (TSI). Tissue-specific (TS) proteins always perform TSIs with a limited number of interacting partners. However, it has been claimed that housekeeping (HK) proteins frequently take part in TSIs. This is actually an unusual phenomenon. How a single HK protein mediates TSIs - remains an interesting yet an unsolved question. We have hypothesized that HK proteins have attained a high degree of structural flexibility to modulate TSIs efficiently. We have observed that HK proteins are selected to be intrinsically disordered compared to TS proteins. Therefore, the purposeful adaptation of structural disorder brings out special advantages for HK proteins compared to TS proteins. We have demonstrated that TSIs may play vital roles in shaping the molecular adaptation of disordered regions within HK proteins. We also have noticed that HK proteins, mediating a huge number of TSIs, have a greater portion of their interacting interfaces overlapped with the adjacent disordered segment. Moreover, these HK proteins, mediating TSIs, preferably adapt single domain (SD). We have concluded that HK proteins adapt a high degree of structural flexibility to mediate TSIs. Besides, having a SD along with structural flexibility is more economic than maintaining multiple domains with a rigid structure. This assists them in attaining various structural conformations upon binding to their partners, thereby designing an economically optimum molecular system.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Sítios de Ligação , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Especificidade de Órgãos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA