Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Nature ; 567(7746): 71-75, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804527

RESUMO

Recent advances in the isolation and stacking of monolayers of van der Waals materials have provided approaches for the preparation of quantum materials in the ultimate two-dimensional limit1,2. In van der Waals heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moiré superlattice3. It is widely recognized that the moiré superlattice can modulate the electronic band structure of the material and lead to transport properties such as unconventional superconductivity4 and insulating behaviour driven by correlations5-7; however, the influence of the moiré superlattice on optical properties has not been investigated experimentally. Here we report the observation of multiple interlayer exciton resonances with either positive or negative circularly polarized emission in a molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterobilayer with a small twist angle. We attribute these resonances to excitonic ground and excited states confined within the moiré potential. This interpretation is supported by recombination dynamics and by the dependence of these interlayer exciton resonances on twist angle and temperature. These results suggest the feasibility of engineering artificial excitonic crystals using van der Waals heterostructures for nanophotonics and quantum information applications.

2.
Mol Biol Rep ; 51(1): 661, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758505

RESUMO

SCN5A mutations have been reported to cause various cardiomyopathies in humans. Most of the SCN5A mutations causes loss of function and thereby, alters the overall cellular function. Therefore, to understand the loss of SCN5A function in cardiomyocytes, we have knocked down the SCN5A gene (SCN5A-KD) in H9c2 cells and explored the cell phenotype and molecular behaviors in the presence and absence of isoproterenol (ISO), an adrenergic receptor agonist that induces cardiac hypertrophy. Expression of several genes related to hypertrophy, inflammation, fibrosis, and energy metabolism pathways were evaluated. It was found that the mRNA expression of hypertrophy-related gene, brain (B-type) natriuretic peptide (BNP) was significantly increased in SCN5A-KD cells as compared to 'control' H9c2 cells. There was a further increase in the mRNA expressions of BNP and ßMHC in SCN5A-KD cells after ISO treatment compared to their respective controls. Pro-inflammatory cytokine, tumor necrosis factor-alpha expression was significantly increased in 'SCN5A-KD' H9c2 cells. Further, metabolism-related genes like glucose transporter type 4, cluster of differentiation 36, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor-gamma were significantly elevated in the SCN5A-KD cells as compared to the control cells. Upregulation of these metabolic genes is associated with increased ATP production. The study revealed that SCN5A knock-down causes alteration of gene expression related to cardiac hypertrophy, inflammation, and energy metabolism pathways, which may promote cardiac remodelling and cardiomyopathy.


Assuntos
Cardiomegalia , Isoproterenol , Canal de Sódio Disparado por Voltagem NAV1.5 , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Ratos , Linhagem Celular , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Animais , Técnicas de Silenciamento de Genes , Humanos , Mioblastos Cardíacos/metabolismo , Metabolismo Energético/genética , Regulação da Expressão Gênica/genética
3.
Nano Lett ; 23(4): 1152-1158, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36662611

RESUMO

Recently, nonvolatile resistive switching memory effects have been actively studied in two-dimensional (2D) transition metal dichalcogenides and boron nitrides to advance future memory and neuromorphic computing applications. Here, we report on radiofrequency (RF) switches utilizing hexagonal boron nitride (h-BN) memristors that afford operation in the millimeter-wave (mmWave) range. Notably, silver (Ag) electrodes to h-BN offer outstanding nonvolatile bipolar resistive switching characteristics with a high ON/OFF switching ratio of 1011 and low switching voltage below 0.34 V. In addition, the switch exhibits a low insertion loss of 0.50 dB and high isolation of 23 dB across the D-band spectrum (110 to 170 GHz). Furthermore, the S21 insertion loss can be tuned through five orders of current compliance magnitude, which increases the application prospects for atomic switches. These results can enable the switch to become a key component for future reconfigurable wireless and 6G communication systems.

4.
Nano Lett ; 23(7): 2952-2957, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36996390

RESUMO

Threshold switches based on conductive metal bridge devices are useful as selectors to block sneak leakage paths in memristor arrays used in neuromorphic computing and emerging nonvolatile memory. We demonstrate that control of Ag-cation concentration in Al2O3 electrolyte and Ag filament size and density play an important role in the high on/off ratio and self-compliance of metal-ion-based volatile threshold switching devices. To control Ag-cation diffusion, we inserted an engineered defective graphene monolayer between the Ag electrode and the Al2O3 electrolyte. The Ag-cation migration and the Ag filament size and density are limited by the pores in the defective graphene monolayer. This leads to quantized conductance in the Ag filaments and self-compliance resulting from the formation and dissolution of the Ag conductive filament.

5.
Prostaglandins Other Lipid Mediat ; 169: 106766, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37479133

RESUMO

Platelets are one of the key mediators in thrombosis as well as in the progression of many diseases. An increase in platelet activation and a decrease in platelet count is associated with a plethora of liver diseases. In non-alcoholic fatty liver disease (NAFLD), platelets are highly activated and participate in the disease progression by enhancing the pro-thrombotic and pro-inflammatory state. Some altered platelet parameters such as mean platelet volume, plateletcrits, and platelet distribution width, aspartate transaminase to platelet ratio index, liver stiffness to platelet ratio and red cell distribution width to platelet ratio were found to be associated with NAFLD disease. Further, platelet contributes to the progression of cardiovascular complications in NAFLD is gaining the researcher's attention. An elevated mean platelet volume is known to enhance the risk of stroke, atherosclerosis, thrombosis, and myocardial infarction in NAFLD. Evidence also suggested that modulation in platelet function using aspirin, ticlopidine, and cilostazol help in controlling the NAFLD progression. Future research should focus on antiplatelet therapy as a treatment strategy that can control platelet activation in NAFLD as well as its cardiovascular risk. In the present review, we have detailed the role of platelets in NAFLD and its cardiovascular complications. We further aimed to highlight the growing need for antiplatelet therapy in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Trombose , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores da Agregação Plaquetária/uso terapêutico , Plaquetas , Ativação Plaquetária , Fígado
6.
Proc Natl Acad Sci U S A ; 117(22): 11878-11886, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424094

RESUMO

Spin Hall effect (SHE), a mechanism by which materials convert a charge current into a spin current, invokes interesting physics and promises to empower transformative, energy-efficient memory technology. However, fundamental questions remain about the essential factors that determine SHE. Here, we solve this open problem, presenting a comprehensive theory of five rational design principles for achieving giant intrinsic SHE in transition metal oxides. Arising from our key insight regarding the inherently geometric nature of SHE, we demonstrate that two of these design principles are weak crystal fields and the presence of structural distortions. Moreover, we discover that antiperovskites are a highly promising class of materials for achieving giant SHE, reaching SHE values an order of magnitude larger than that reported for any oxide. Additionally, we derive three other design principles for enhancing SHE. Our findings bring deeper insight into the physics driving SHE and could help enhance and externally control SHE values.

7.
Proc Natl Acad Sci U S A ; 117(38): 23762-23773, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32873641

RESUMO

Bacterial species are hosts to horizontally acquired mobile genetic elements (MGEs), which encode virulence, toxin, antimicrobial resistance, and other metabolic functions. The bipartite genome of Vibrio cholerae harbors sporadic and conserved MGEs that contribute in the disease development and survival of the pathogens. For a comprehensive understanding of dynamics of MGEs in the bacterial genome, we engineered the genome of V. cholerae and examined in vitro and in vivo stability of genomic islands (GIs), integrative conjugative elements (ICEs), and prophages. Recombinant vectors carrying the integration module of these GIs, ICE and CTXΦ, helped us to understand the efficiency of integrations of MGEs in the V. cholerae chromosome. We have deleted more than 250 acquired genes from 6 different loci in the V. cholerae chromosome and showed contribution of CTX prophage in the essentiality of SOS response master regulator LexA, which is otherwise not essential for viability in other bacteria, including Escherichia coli In addition, we observed that the core genome-encoded RecA helps CTXΦ to bypass V. cholerae immunity and allow it to replicate in the host bacterium in the presence of similar prophage in the chromosome. Finally, our proteomics analysis reveals the importance of MGEs in modulating the levels of cellular proteome. This study engineered the genome of V. cholerae to remove all of the GIs, ICEs, and prophages and revealed important interactions between core and acquired genomes.


Assuntos
Genoma Bacteriano/genética , Ilhas Genômicas/genética , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Conjugação Genética/genética , Engenharia Genética , Sequências Repetitivas Dispersas/genética , Prófagos/genética , Serina Endopeptidases/genética , Vibrio cholerae/patogenicidade
8.
Anal Chem ; 94(39): 13315-13322, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137231

RESUMO

Untargeted liquid chromatography/high-resolution mass spectrometry (LC/HRMS) assays in metabolomics and exposomics aim to characterize the small molecule chemical space in a biospecimen. To gain maximum biological insights from these data sets, LC/HRMS peaks should be annotated with chemical and functional information including molecular formula, structure, chemical class, and metabolic pathways. Among these, molecular formulas may be assigned to LC/HRMS peaks through matching theoretical and observed isotopic profiles (MS1) of the underlying ionized compound. For this, we have developed the Integrated Data Science Laboratory for Metabolomics and Exposomics-United Formula Annotation (IDSL.UFA) R package. In the untargeted metabolomics validation tests, IDSL.UFA assigned 54.31-85.51% molecular formula for true positive annotations as the top hit and 90.58-100% within the top five hits. Molecular formula annotations were also supported by tandem mass spectrometry data. We have implemented new strategies to (1) generate formula sources and their theoretical isotopic profiles, (2) optimize the formula hits ranking for the individual and aligned peak lists, and (3) scale IDSL.UFA-based workflows for studies with larger sample sizes. Annotating the raw data for a publicly available pregnancy metabolome study using IDSL.UFA highlighted hundreds of new pregnancy-related compounds and also suggested the presence of chlorinated perfluorotriether alcohols (Cl-PFTrEAs) in human specimens. IDSL.UFA is useful for human metabolomics and exposomics studies where we need to minimize the loss of biological insights in untargeted LC/HRMS data sets. The IDSL.UFA package is available in the R CRAN repository https://cran.r-project.org/package=IDSL.UFA. Detailed documentation and tutorials are also provided at www.ufa.idsl.me.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Álcoois , Cromatografia Líquida/métodos , Humanos , Metaboloma , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos
9.
Angew Chem Int Ed Engl ; 61(9): e202112412, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34729885

RESUMO

Perovskite quantum dots (QDs) preserve the attractive properties of perovskite bulk materials and present additional advantages, owing to their quantum confinement effect, leading to their suitability as an absorber in perovskite solar cells. In this Review, the issues and advantages of perovskite QDs are analyzed in the context of purification, device fabrication with perovskite QDs, light absorption, charge transport, and stability. In addition, promising strategies to enhance perovskite QDs and QD-based solar cells are elucidated based on exchange chemistry (ion and ligand exchange), passivation engineering (ion and ligand passivation), and structure engineering (conventional/inverted, planar/mesoscopic and dimensionally graded structures). These discussions will give a clue to the further development of perovskite QDs and thus the advancement of QD-based solar cells.

10.
Biotechnol Bioeng ; 118(12): 4577-4589, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34491580

RESUMO

Sortase A, a transpeptidase enzyme is present in many Gram-positive bacteria and helps in the recruitment of the cell surface proteins. Over the last two decades, Sortase A has become an attractive tool for performing in vivo and in vitro ligations. Sortase A-mediated ligation has continuously been used for its specificity, robustness, and highly efficient nature. These properties make it a popular choice among protein engineers as well as researchers from different fields. In this review, we give an overview of Sortase A-mediated ligation of various molecules on the cell surfaces, which can have diverse applications in interdisciplinary fields.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Membrana Celular , Cisteína Endopeptidases , Modelos Biológicos , Staphylococcus aureus , Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Técnicas de Sonda Molecular , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/citologia , Staphylococcus aureus/metabolismo
11.
Small ; 16(28): e1907531, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32452645

RESUMO

The efficiency of perovskite solar cells (PSCs) has undergone rapid advancement due to great progress in materials development over the past decade and is under extensive study. Despite the significant challenges (e.g., recombination and hysteresis), both the single-junction and tandem cells have gradually approached the theoretical efficiency limit. Herein, an overview is given of how passivation and crystallization reduce recombination and thus improve the device performance; how the materials of dominant layers (hole transporting layer (HTL), electron transporting layer (ETL), and absorber layer) affect the quality and optoelectronic properties of single-junction PSCs; and how the materials development contributes to rapid efficiency enhancement of perovskite/Si tandem devices with monolithic and mechanically stacked configurations. The interface optimization, novel materials development, mixture strategy, and bandgap tuning are reviewed and analyzed. This is a review of the major factors determining efficiency, and how further improvements can be made on the performance of PSCs.

12.
Nano Lett ; 19(3): 1976-1981, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30779591

RESUMO

The vertical stacking of van der Waals (vdW) materials introduces a new degree of freedom to the research of two-dimensional (2D) systems. The interlayer coupling strongly influences the band structure of the heterostructures, resulting in novel properties that can be utilized for electronic and optoelectronic applications. Based on microwave microscopy studies, we report quantitative electrical imaging on gated molybdenum disulfide (MoS2)/tungsten diselenide (WSe2) heterostructure devices, which exhibit an intriguing antiambipolar effect in their transfer characteristics. Interestingly, in the region with significant source-drain current, electrons in the n-type MoS2 and holes in the p-type WSe2 segments are nearly balanced, whereas the heterostructure area is depleted of mobile charges. The spatial evolution of local conductance can be ascribed to the lateral band bending and formation of depletion regions along the line of MoS2-heterostructure-WSe2. Our work vividly demonstrates the microscopic origin of novel transport behaviors, which is important for the vibrant field of vdW heterojunction research.

13.
J Transl Med ; 17(1): 17, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30674322

RESUMO

BACKGROUND: Coronary artery disease (CAD) is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). The purpose of the present study was to discriminate the Indian CAD patients with or without T2DM by using multiple pathophysiological biomarkers. METHODS: Using sensitive multiplex protein assays, we assessed 46 protein markers including cytokines/chemokines, metabolic hormones, adipokines and apolipoproteins for evaluating different pathophysiological conditions of control, T2DM, CAD and T2DM with CAD patients (T2DM_CAD). Network analysis was performed to create protein-protein interaction networks by using significantly (p < 0.05) altered protein markers in each disease using STRING 10.5 database. We used two supervised analysis methods i.e., between class analysis (BCA) and principal component analysis (PCA) to reveals distinct biomarkers profiles. Further, random forest classification (RF) was used to classify the diseases by the panel of markers. RESULTS: Our two supervised analysis methods BCA and PCA revealed a distinct biomarker profiles and high degree of variability in the marker profiles for T2DM_CAD and CAD. Thereafter, the present study identified multiple potential biomarkers to differentiate T2DM, CAD, and T2DM_CAD patients based on their relative abundance in serum. RF classified T2DM based on the abundance patterns of nine markers i.e., IL-1ß, GM-CSF, glucagon, PAI-I, rantes, IP-10, resistin, GIP and Apo-B; CAD by 14 markers i.e., resistin, PDGF-BB, PAI-1, lipocalin-2, leptin, IL-13, eotaxin, GM-CSF, Apo-E, ghrelin, adipsin, GIP, Apo-CII and IP-10; and T2DM _CAD by 12 markers i.e., insulin, resistin, PAI-1, adiponectin, lipocalin-2, GM-CSF, adipsin, leptin, Apo-AII, rantes, IL-6 and ghrelin with respect to the control subjects. Using network analysis, we have identified several cellular network proteins like PTPN1, AKT1, INSR, LEPR, IRS1, IRS2, IL1R2, IL6R, PCSK9 and MYD88, which are responsible for regulating inflammation, insulin resistance, and atherosclerosis. CONCLUSION: We have identified three distinct sets of serum markers for diabetes, CAD and diabetes associated with CAD in Indian patients using nonparametric-based machine learning approach. These multiple marker classifiers may be useful for monitoring progression from a healthy person to T2DM and T2DM to T2DM_CAD. However, these findings need to be further confirmed in the future studies with large number of samples.


Assuntos
Proteínas Sanguíneas/metabolismo , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Adulto , Idoso , Algoritmos , Área Sob a Curva , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Transdução de Sinais
14.
Nanotechnology ; 30(3): 03LT01, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30418941

RESUMO

The synthesis of lateral heterostructures assembled by atomically-thin materials with distinct intrinsic properties is important for future heterojunction-embedded two-dimensional (2D) devices. Here we report an etching-assisted chemical vapor deposition method to synthesize large-area continuous lateral graphene/hexagonal boron nitride (Gr/h-BN) heterostructures on carbon-containing copper foils. The h-BN film is first synthesized on the copper foil, followed by hydrogen etching, and then epitaxial graphene domains are grown to form continuous lateral heterostructures. Analyses, including Raman spectroscopy, atomic force microscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and ultraviolet-visible absorption spectroscopy, are used to characterize the coexistence of both materials and the highly continuous nature of this lateral heterostructure. This facile and scalable synthesizing method enables the potential usage of Gr/h-BN heterostructure in both fundamental studies and related 2D devices.

15.
Phys Rev Lett ; 120(10): 107703, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570322

RESUMO

We present a combined experimental and theoretical study of valley populations in the valence bands of trilayer WSe_{2}. Shubnikov-de Haas oscillations show that trilayer holes populate two distinct subbands associated with the K and Γ valleys, with effective masses 0.5m_{e} and 1.2m_{e}, respectively; m_{e} is the bare electron mass. At a fixed total hole density, an applied transverse electric field transfers holes from Γ orbitals to K orbitals. We are able to explain this behavior in terms of the larger layer polarizability of the K orbital subband.

16.
Nano Lett ; 17(9): 5464-5471, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28763615

RESUMO

Two-dimensional (2D) materials have recently been theoretically predicted and experimentally confirmed to exhibit electromechanical coupling. Specifically, monolayer and few-layer molybdenum disulfide (MoS2) have been measured to be piezoelectric within the plane of their atoms. This work demonstrates and quantifies a nonzero out-of-plane electromechanical response of monolayer MoS2 and discusses its possible origins. A piezoresponse force microscope was used to measure the out-of-plane deformation of monolayer MoS2 on Au/Si and Al2O3/Si substrates. Using a vectorial background subtraction technique, we estimate the effective out-of-plane piezoelectric coefficient, d33eff, for monolayer MoS2 to be 1.03 ± 0.22 pm/V when measured on the Au/Si substrate and 1.35 ± 0.24 pm/V when measured on Al2O3/Si. This is on the same order as the in-plane coefficient d11 reported for monolayer MoS2. Interpreting the out-of-plane response as a flexoelectric response, the effective flexoelectric coefficient, µeff*, is estimated to be 0.10 nC/m. Analysis has ruled out the possibility of elastic and electrostatic forces contributing to the measured electromechanical response. X-ray photoelectron spectroscopy detected some contaminants on both MoS2 and its substrate, but the background subtraction technique is expected to remove major contributions from the unwanted contaminants. These measurements provide evidence that monolayer MoS2 exhibits an out-of-plane electromechanical response and our analysis offers estimates of the effective piezoelectric and flexoelectric coefficients.

17.
Phys Rev Lett ; 118(24): 247701, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665633

RESUMO

We report a study of the quantum Hall states (QHS) of holes in mono- and bilayer WSe_{2}. The QHS sequence transitions between predominantly even and predominantly odd filling factors as the hole density is tuned in the range 1.6-12×10^{12} cm^{-2}. Measurements in tilted magnetic fields reveal an insensitivity of the QHS to the in-plane magnetic field, evincing that the hole spin is locked perpendicular to the WSe_{2} plane. Furthermore, the QHS sequence is insensitive to an applied electric field. These observations imply that the QHS sequence is controlled by the Zeeman-to-cyclotron energy ratio, which remains constant as a function of perpendicular magnetic field at a fixed carrier density, but changes as a function of density due to strong electron-electron interaction.

18.
Org Biomol Chem ; 15(28): 6057, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28686256

RESUMO

Correction for 'Synthesis of l-rhamnose derived chiral bicyclic triazoles as novel sodium-glucose transporter (SGLT) inhibitors' by Siddamal Reddy Putapatri et al., Org. Biomol. Chem., 2014, 12, 8415-8421.

19.
Nano Lett ; 16(8): 4975-81, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27416362

RESUMO

Interlayer tunnel field-effect transistors based on graphene and hexagonal boron nitride (hBN) have recently attracted much interest for their potential as beyond-CMOS devices. Using a recently developed method for fabricating rotationally aligned two-dimensional heterostructures, we show experimental results for devices with varying thicknesses and stacking order of the graphene electrode layers and also model the current-voltage behavior. We show that an increase in the graphene layer thickness results in narrower resonance. However, due to a simultaneous increase in the number of sub-bands and decrease of sub-band separation with an increase in thickness, the negative differential resistance peaks becomes less prominent and do not appear for certain conditions at room temperature. Also, we show that due to the unique band structure of odd number of layer Bernal-stacked graphene, the number of closely spaced resonance conditions increase, causing interference between neighboring resonance peaks. Although this can be avoided with even number of layer graphene, we find that in this case the bandgap opening present at high biases tend to broaden the resonance peaks.

20.
Nano Lett ; 16(3): 1989-95, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26859527

RESUMO

We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA