Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Biophys J ; 123(7): 909-919, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38449309

RESUMO

Cell proliferation plays a crucial role in regulating tissue homeostasis and development. However, our understanding of how cell proliferation is controlled in densely packed tissues is limited. Here we develop a computational framework to predict the patterns of cell proliferation in growing epithelial tissues, connecting single-cell behaviors and cell-cell interactions to tissue-level growth. Our model incorporates probabilistic rules governing cell growth, division, and elimination, also taking into account their feedback with tissue mechanics. In particular, cell growth is suppressed and apoptosis is enhanced in regions of high cell density. With these rules and model parameters calibrated using experimental data for epithelial monolayers, we predict how tissue confinement influences cell size and proliferation dynamics and how single-cell physical properties influence the spatiotemporal patterns of tissue growth. In this model, mechanical feedback between tissue confinement and cell growth leads to enhanced cell proliferation at tissue boundaries, whereas cell growth in the bulk is arrested, recapitulating experimental observations in epithelial tissues. By tuning cellular elasticity and contact inhibition of proliferation we can regulate the emergent patterns of cell proliferation, ranging from uniform growth at low contact inhibition to localized growth at higher contact inhibition. We show that the cell size threshold at G1/S transition governs the homeostatic cell density and tissue turnover rate, whereas the mechanical state of the tissue governs the dynamics of tissue growth. In particular, we find that the cellular parameters affecting tissue pressure play a significant role in determining the overall growth rate. Our computational study thus underscores the impact of cell mechanical properties on the spatiotemporal patterns of cell proliferation in growing epithelial tissues.


Assuntos
Comunicação Celular , Células Epiteliais , Proliferação de Células , Epitélio , Ciclo Celular
2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941697

RESUMO

Gap closure is a common morphogenetic process. In mammals, failure to close the embryonic hindbrain neuropore (HNP) gap causes fatal anencephaly. We observed that surface ectoderm cells surrounding the mouse HNP assemble high-tension actomyosin purse strings at their leading edge and establish the initial contacts across the embryonic midline. Fibronectin and laminin are present, and tensin 1 accumulates in focal adhesion-like puncta at this leading edge. The HNP gap closes asymmetrically, faster from its rostral than caudal end, while maintaining an elongated aspect ratio. Cell-based physical modeling identifies two closure mechanisms sufficient to account for tissue-level HNP closure dynamics: purse-string contraction and directional cell motion implemented through active crawling. Combining both closure mechanisms hastens gap closure and produces a constant rate of gap shortening. Purse-string contraction reduces, whereas crawling increases gap aspect ratio, and their combination maintains it. Closure rate asymmetry can be explained by asymmetric embryo tissue geometry, namely a narrower rostral gap apex, whereas biomechanical tension inferred from laser ablation is equivalent at the gaps' rostral and caudal closure points. At the cellular level, the physical model predicts rearrangements of cells at the HNP rostral and caudal extremes as the gap shortens. These behaviors are reproducibly live imaged in mouse embryos. Thus, mammalian embryos coordinate cellular- and tissue-level mechanics to achieve this critical gap closure event.


Assuntos
Embrião de Mamíferos/metabolismo , Crista Neural/metabolismo , Tubo Neural/metabolismo , Rombencéfalo/metabolismo , Anencefalia/embriologia , Anencefalia/genética , Anencefalia/metabolismo , Animais , Caderinas/metabolismo , Embrião de Mamíferos/embriologia , Feminino , Fibronectinas/metabolismo , Laminina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/embriologia , Tubo Neural/embriologia , Rombencéfalo/embriologia , Imagem com Lapso de Tempo/métodos
3.
Biophys J ; 122(7): 1254-1267, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36814380

RESUMO

Proliferating bacterial cells exhibit stochastic growth and size dynamics, but the regulation of noise in bacterial growth and morphogenesis remains poorly understood. A quantitative understanding of morphogenetic noise control, and how it changes under different growth conditions, would provide better insights into cell-to-cell variability and intergenerational fluctuations in cell physiology. Using multigenerational growth and width data of single Escherichia coli and Caulobacter crescentus cells, we deduce the equations governing growth and size dynamics of rod-like bacterial cells. Interestingly, we find that both E. coli and C. crescentus cells deviate from exponential growth within the cell cycle. In particular, the exponential growth rate increases during the cell cycle irrespective of nutrient or temperature conditions. We propose a mechanistic model that explains the emergence of super-exponential growth from autocatalytic production of ribosomes coupled to the rate of cell elongation and surface area synthesis. Using this new model and statistical inference on large datasets, we construct the Langevin equations governing cell growth and size dynamics of E. coli cells in different nutrient conditions. The single-cell level model predicts how noise in intragenerational and intergenerational processes regulate variability in cell morphology and generation times, revealing quantitative strategies for cellular resource allocation and morphogenetic noise control in different growth conditions.


Assuntos
Caulobacter crescentus , Escherichia coli , Modelos Biológicos , Divisão Celular , Ciclo Celular , Caulobacter crescentus/fisiologia
4.
PLoS Comput Biol ; 18(6): e1010253, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714135

RESUMO

How cells regulate the size of intracellular structures and organelles is a longstanding question. Recent experiments suggest that size control of intracellular structures is achieved through the depletion of a limiting subunit pool in the cytoplasm. While the limiting pool model ensures organelle-to-cell size scaling, it does not provide a mechanism for robust size control of multiple co-existing structures. Here we develop a generalized theory for size-dependent growth of intracellular structures to demonstrate that robust size control of multiple intracellular structures, competing for a limiting subunit pool, is achieved via a negative feedback between the growth rate and the size of the individual structure. This design principle captures size maintenance of a wide variety of subcellular structures, from cytoskeletal filaments to three-dimensional organelles. We identify the feedback motifs for structure size regulation based on known molecular processes, and compare our theory to existing models of size regulation in biological assemblies. Furthermore, we show that positive feedback between structure size and growth rate can lead to bistable size distribution and spontaneous size selection.


Assuntos
Citoesqueleto , Organelas , Tamanho Celular , Citoplasma , Organelas/fisiologia
5.
PLoS Comput Biol ; 18(3): e1009981, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35353813

RESUMO

The actin cortex is an active adaptive material, embedded with complex regulatory networks that can sense, generate, and transmit mechanical forces. The cortex exhibits a wide range of dynamic behaviours, from generating pulsatory contractions and travelling waves to forming organised structures. Despite the progress in characterising the biochemical and mechanical components of the actin cortex, the emergent dynamics of this mechanochemical system is poorly understood. Here we develop a reaction-diffusion model for the RhoA signalling network, the upstream regulator for actomyosin assembly and contractility, coupled to an active actomyosin gel, to investigate how the interplay between chemical signalling and mechanical forces regulates stresses and patterns in the cortex. We demonstrate that mechanochemical feedback in the cortex acts to destabilise homogeneous states and robustly generate pulsatile contractions. By tuning active stress in the system, we show that the cortex can generate propagating contraction pulses, form network structures, or exhibit topological turbulence.


Assuntos
Actinas , Actomiosina , Citoesqueleto de Actina , Actomiosina/química
6.
Biophys J ; 121(12): 2436-2448, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35598045

RESUMO

Actin is one of the key structural components of the eukaryotic cytoskeleton that regulates cellular architecture and mechanical properties. Dynamic regulation of actin filament length and organization is essential for the control of many physiological processes including cell adhesion, motility and division. While previous studies have mostly focused on the mechanisms controlling the length of single actin filaments, it remains poorly understood how distinct actin filament populations in cells maintain different lengths using the same set of molecular building blocks. Here, we develop a theoretical model for the length regulation of multiple actin filaments by nucleation and growth-rate modulation by actin-binding proteins in a limiting pool of monomers. We first show that spontaneous nucleation of actin filaments naturally leads to heterogeneities in filament length distribution. We then investigate the effects of filament growth inhibition by capping proteins and growth promotion by formin proteins on filament length distribution. We find that filament length heterogeneity can be increased by growth inhibition, whereas growth promoters do not significantly affect length heterogeneity. Interestingly, a competition between filament growth inhibitors and growth promoters can give rise to bimodal filament length distribution as well as a highly heterogeneous length distribution with large statistical dispersion. We quantitatively predict how heterogeneity in actin filament length can be modulated by tuning filamentous actin nucleation and growth rates in order to create distinct filament subpopulations with different lengths.


Assuntos
Citoesqueleto de Actina , Actinas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Células Eucarióticas/metabolismo , Proteínas dos Microfilamentos/metabolismo
7.
Biochem Soc Trans ; 50(5): 1269-1279, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36093840

RESUMO

Characterizing the physiological response of bacterial cells to antibiotic treatment is crucial for the design of antibacterial therapies and for understanding the mechanisms of antibiotic resistance. While the effects of antibiotics are commonly characterized by their minimum inhibitory concentrations or the minimum bactericidal concentrations, the effects of antibiotics on cell morphology and physiology are less well characterized. Recent technological advances in single-cell studies of bacterial physiology have revealed how different antibiotic drugs affect the physiological state of the cell, including growth rate, cell size and shape, and macromolecular composition. Here, we review recent quantitative studies on bacterial physiology that characterize the effects of antibiotics on bacterial cell morphology and physiological parameters. In particular, we present quantitative data on how different antibiotic targets modulate cellular shape metrics including surface area, volume, surface-to-volume ratio, and the aspect ratio. Using recently developed quantitative models, we relate cell shape changes to alterations in the physiological state of the cell, characterized by changes in the rates of cell growth, protein synthesis and proteome composition. Our analysis suggests that antibiotics induce distinct morphological changes depending on their cellular targets, which may have important implications for the regulation of cellular fitness under stress.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteoma/metabolismo , Farmacorresistência Bacteriana
8.
Soft Matter ; 18(40): 7877-7886, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36205535

RESUMO

Coordinated and cooperative motion of cells is essential for embryonic development, tissue morphogenesis, wound healing and cancer invasion. A predictive understanding of the emergent mechanical behaviors in collective cell motion is challenging due to the complex interplay between cell-cell interactions, cell-matrix adhesions and active cell behaviors. To overcome this challenge, we develop a predictive cellular vertex model that can delineate the relative roles of substrate rigidity, tissue mechanics and active cell properties on the movement of cell collectives. We apply the model to the specific case of collective motion in cell aggregates as they spread into a two-dimensional cell monolayer adherent to a soft elastic matrix. Consistent with recent experiments, we find that substrate stiffness regulates the driving forces for the spreading of cellular monolayer, which can be pressure-driven or crawling-based depending on substrate rigidity. On soft substrates, cell monolayer spreading is driven by an active pressure due to the influx of cells coming from the aggregate, whereas on stiff substrates, cell spreading is driven primarily by active crawling forces. Our model predicts that cooperation of cell crawling and tissue pressure drives faster spreading, while the spreading rate is sensitive to the mechanical properties of the tissue. We find that solid tissues spread faster on stiff substrates, with spreading rate increasing with tissue tension. By contrast, the spreading of fluid tissues is independent of substrate stiffness and is slower than solid tissues. We compare our theoretical results with experimental results on traction force generation and spreading kinetics of cell monolayers, and provide new predictions on the role of tissue fluidity and substrate rigidity on collective cell motion.


Assuntos
Comunicação Celular , Fenômenos Mecânicos , Cinética , Movimento Celular/fisiologia , Adesão Celular
9.
Semin Cancer Biol ; 63: 60-68, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31108201

RESUMO

Cell competition is a quality control mechanism in tissues that results in the elimination of less fit cells. Over the past decade, the phenomenon of cell competition has been identified in many physiological and pathological contexts, driven either by biochemical signaling or by mechanical forces within the tissue. In both cases, competition has generally been characterized based on the elimination of loser cells at the population level, but significantly less attention has been focused on determining how single-cell dynamics and interactions regulate population-wide changes. In this review, we describe quantitative strategies and outline the outstanding challenges in understanding the single cell rules governing tissue-scale competition dynamics. We propose quantitative metrics to characterize single cell behaviors in competition and use them to distinguish the types and outcomes of competition. We describe how such metrics can be measured experimentally using a novel combination of high-throughput imaging and machine learning algorithms. We outline the experimental challenges to quantify cell fate dynamics with high-statistical precision, and describe the utility of computational modeling in testing hypotheses not easily accessible in experiments. In particular, cell-based modeling approaches that combine mechanical interaction of cells with decision-making rules for cell fate choices provide a powerful framework to understand and reverse-engineer the diverse rules of cell competition.


Assuntos
Aprendizado de Máquina , Imagem Molecular/métodos , Neoplasias/patologia , Análise de Célula Única/métodos , Animais , Comunicação Celular/fisiologia , Simulação por Computador , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/etiologia , Neoplasias/metabolismo , Transdução de Sinais
10.
Biophys J ; 120(11): 2079-2084, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838134

RESUMO

By analyzing cell size and shapes of the bacterium Bacillus subtilis under nutrient perturbations, protein depletion, and antibiotic treatments, we find that cell geometry is extremely robust, reflected in a well-conserved scaling relation between surface area (S) and volume (V), S∼Vγ, with γ=0.85. We develop a molecular model supported by single-cell simulations to predict that the surface-to-volume scaling exponent γ is regulated by nutrient-dependent production of metabolic enzymes that act as cell division inhibitors in bacteria. Using theory that is supported by experimental data, we predict the modes of cell shape transformations in different bacterial species and propose a mechanism of cell shape adaptation to different nutrient perturbations. For organisms with high surface-to-volume scaling exponent γ, such as B. subtilis, cell width is not sensitive to growth-rate changes, whereas organisms with low γ, such as Acinetobacter baumannii, cell shape adapts readily to growth-rate changes.


Assuntos
Bacillus subtilis , Nutrientes , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Divisão Celular , Forma Celular
11.
Proc Natl Acad Sci U S A ; 114(9): 2131-2136, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28202730

RESUMO

The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Reagentes de Ligações Cruzadas/química , Filaminas/química , Citoesqueleto de Actina/ultraestrutura , Elasticidade , Cinética , Modelos Biológicos , Soluções , Termodinâmica , Viscosidade
12.
Proc Natl Acad Sci U S A ; 114(47): E10037-E10045, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114058

RESUMO

Molecular motors embedded within collections of actin and microtubule filaments underlie the dynamics of cytoskeletal assemblies. Understanding the physics of such motor-filament materials is critical to developing a physical model of the cytoskeleton and designing biomimetic active materials. Here, we demonstrate through experiments and simulations that the rigidity and connectivity of filaments in active biopolymer networks regulates the anisotropy and the length scale of the underlying deformations, yielding materials with variable contractility. We find that semiflexible filaments can be compressed and bent by motor stresses, yielding materials that undergo predominantly biaxial deformations. By contrast, rigid filament bundles slide without bending under motor stress, yielding materials that undergo predominantly uniaxial deformations. Networks dominated by biaxial deformations are robustly contractile over a wide range of connectivities, while networks dominated by uniaxial deformations can be tuned from extensile to contractile through cross-linking. These results identify physical parameters that control the forces generated within motor-filament arrays and provide insight into the self-organization and mechanics of cytoskeletal assemblies.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Proteínas de Transporte/química , Citoesqueleto/química , Filaminas/química , Proteínas dos Microfilamentos/química , Microtúbulos/química , Miosinas/química , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/metabolismo , Galinhas , Simulação por Computador , Citoesqueleto/ultraestrutura , Filaminas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Miosinas/metabolismo , Coelhos
13.
Biophys J ; 117(9): 1739-1750, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31635790

RESUMO

Morphogenesis of epithelial tissues requires tight spatiotemporal coordination of cell shape changes. In vivo, many tissue-scale shape changes are driven by pulsatile contractions of intercellular junctions, which are rectified to produce irreversible deformations. The functional role of this pulsatory ratchet and its mechanistic basis remain unknown. Here we combine theory and biophysical experiments to show that mechanosensitive tension remodeling of epithelial cell junctions promotes robust epithelial shape changes via ratcheting. Using optogenetic control of actomyosin contractility, we find that epithelial junctions show elastic behavior under low contractile stress, returning to their original lengths after contraction, but undergo irreversible deformation under higher magnitudes of contractile stress. Existing vertex-based models for the epithelium are unable to capture these results, with cell junctions displaying purely elastic or fluid-like behaviors, depending on the choice of model parameters. To describe the experimental results, we propose a modified vertex model with two essential ingredients for junction mechanics: thresholded tension remodeling and continuous strain relaxation. First, junctions must overcome a critical strain threshold to trigger tension remodeling, resulting in irreversible junction length changes. Second, there is a continuous relaxation of junctional strain that removes mechanical memory from the system. This enables pulsatile contractions to further remodel cell shape via mechanical ratcheting. Taken together, the combination of mechanosensitive tension remodeling and junctional strain relaxation provides a robust mechanism for large-scale morphogenesis.


Assuntos
Epitélio/crescimento & desenvolvimento , Junções Intercelulares/metabolismo , Mecanotransdução Celular , Morfogênese , Fenômenos Biomecânicos , Células CACO-2 , Simulação por Computador , Elasticidade , Células Epiteliais/metabolismo , Humanos , Modelos Biológicos , Optogenética , Viscosidade , Proteínas rho de Ligação ao GTP/metabolismo
14.
Adv Funct Mater ; 29(49)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32523502

RESUMO

Incorporating growth into contemporary material functionality presents a grand challenge in materials design. The F-actin cytoskeleton is an active polymer network which serves as the mechanical scaffolding for eukaryotic cells, growing and remodeling in order to determine changes in cell shape. Nucleated from the membrane, filaments polymerize and grow into a dense network whose dynamics of assembly and disassembly, or 'turnover', coordinates both fluidity and rigidity. Here, we vary the extent of F-actin nucleation from a membrane surface in a biomimetic model of the cytoskeleton constructed from purified protein. We find that nucleation of F-actin mediates the accumulation and dissipation of polymerization-induced F-actin bending energy. At high and low nucleation, bending energies are low and easily relaxed yielding an isotropic material. However, at an intermediate critical nucleation, stresses are not relaxed by turnover and the internal energy accumulates 100-fold. In this case, high filament curvatures template further assembly of F-actin, driving the formation and stabilization of vortex-like topological defects. Thus, nucleation coordinates mechanical and chemical timescales to encode shape memory into active materials.

15.
PLoS Comput Biol ; 14(10): e1006502, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30273354

RESUMO

Collective cell migration in cohesive units is vital for tissue morphogenesis, wound repair, and immune response. While the fundamental driving forces for collective cell motion stem from contractile and protrusive activities of individual cells, it remains unknown how their balance is optimized to maintain tissue cohesiveness and the fluidity for motion. Here we present a cell-based computational model for collective cell migration during wound healing that incorporates mechanochemical coupling of cell motion and adhesion kinetics with stochastic transformation of active motility forces. We show that a balance of protrusive motility and actomyosin contractility is optimized for accelerating the rate of wound repair, which is robust to variations in cell and substrate mechanical properties. This balance underlies rapid collective cell motion during wound healing, resulting from a tradeoff between tension mediated collective cell guidance and active stress relaxation in the tissue.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Cicatrização/fisiologia , Animais , Biologia Computacional , Cães , Módulo de Elasticidade/fisiologia , Adesões Focais/fisiologia , Células Madin Darby de Rim Canino , Modelos Biológicos
16.
Adv Exp Med Biol ; 1146: 45-66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31612453

RESUMO

Collective cell migration plays a central role in tissue development, morphogenesis, wound repair and cancer progression. With the growing realization that physical forces mediate cell motility in development and physiology, a key biological question is how cells integrate molecular activities for force generation on multicellular scales. In this review we discuss recent advances in modeling collective cell migration using quantitative tools and approaches rooted in soft matter physics. We focus on theoretical models of cell aggregates as continuous active media, where the feedback between mechanical forces and regulatory biochemistry gives rise to rich collective dynamical behavior. This class of models provides a powerful predictive framework for the physiological dynamics that underlies many developmental processes, where cells need to collectively migrate like a viscous fluid to reach a target region, and then stiffen to support mechanical stresses and maintain tissue cohesion.


Assuntos
Fenômenos Biomecânicos , Movimento Celular , Modelos Biológicos , Movimento Celular/fisiologia , Morfogênese , Cicatrização
17.
Proc Natl Acad Sci U S A ; 113(18): 5000-5, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27091995

RESUMO

CC chemokine ligand 5 (CCL5) and CCL3 are critical for immune surveillance and inflammation. Consequently, they are linked to the pathogenesis of many inflammatory conditions and are therapeutic targets. Oligomerization and glycosaminoglycan (GAG) binding of CCL5 and CCL3 are vital for the functions of these chemokines. Our structural and biophysical analyses of human CCL5 reveal that CCL5 oligomerization is a polymerization process in which CCL5 forms rod-shaped, double-helical oligomers. This CCL5 structure explains mutational data and offers a unified mechanism for CCL3, CCL4, and CCL5 assembly into high-molecular-weight, polydisperse oligomers. A conserved, positively charged BBXB motif is key for the binding of CC chemokines to GAG. However, this motif is partially buried when CCL3, CCL4, and CCL5 are oligomerized; thus, the mechanism by which GAG binds these chemokine oligomers has been elusive. Our structures of GAG-bound CCL5 and CCL3 oligomers reveal that these chemokine oligomers have distinct GAG-binding mechanisms. The CCL5 oligomer uses another positively charged and fully exposed motif, KKWVR, in GAG binding. However, residues from two partially buried BBXB motifs along with other residues combine to form a GAG-binding groove in the CCL3 oligomer. The N termini of CC chemokines are shown to be involved in receptor binding and oligomerization. We also report an alternative CCL3 oligomer structure that reveals how conformational changes in CCL3 N termini profoundly alter its surface properties and dimer-dimer interactions to affect GAG binding and oligomerization. Such complexity in oligomerization and GAG binding enables intricate, physiologically relevant regulation of CC chemokine functions.


Assuntos
Quimiocina CCL3/química , Quimiocina CCL3/ultraestrutura , Quimiocina CCL5/química , Quimiocina CCL5/ultraestrutura , Glicosaminoglicanos/química , Sítios de Ligação , Dimerização , Humanos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
18.
Soft Matter ; 14(37): 7740-7747, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30204203

RESUMO

Living cells dynamically modulate the local morphologies of their actin networks to perform biological functions, including force transduction, intracellular transport, and cell division. A major challenge is to understand how diverse structures of the actin cytoskeleton are assembled from a limited set of molecular building blocks. Here we study the spontaneous self-assembly of a minimal model of cytoskeletal materials, consisting of semiflexible actin filaments, crosslinkers, and molecular motors. Using coarse-grained simulations, we demonstrate that by changing concentrations and kinetics of crosslinkers and motors, as well as filament lengths, we can generate three distinct structural phases of actomyosin assemblies: bundled, polarity-sorted, and contracted. We introduce new metrics to distinguish these structural phases and demonstrate their functional roles. We find that the binding kinetics of motors and crosslinkers can be tuned to optimize contractile force generation, motor transport, and mechanical response. By quantitatively characterizing the relationships between the modes of cytoskeletal self-assembly, the resulting structures, and their functional consequences, our work suggests new principles for the design of active materials.


Assuntos
Actomiosina/metabolismo , Modelos Biológicos , Actinas/metabolismo , Elasticidade , Viscosidade
19.
Biophys J ; 113(2): 448-460, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28746855

RESUMO

Computer simulations can aid in understanding how collective materials properties emerge from interactions between simple constituents. Here, we introduce a coarse-grained model that enables simulation of networks of actin filaments, myosin motors, and cross-linking proteins at biologically relevant time and length scales. We demonstrate that the model qualitatively and quantitatively captures a suite of trends observed experimentally, including the statistics of filament fluctuations, and mechanical responses to shear, motor motilities, and network rearrangements. We use the simulation to predict the viscoelastic scaling behavior of cross-linked actin networks, characterize the trajectories of actin in a myosin motility assay, and develop order parameters to measure contractility of a simulated actin network. The model can thus serve as a platform for interpretation and design of cytoskeletal materials experiments, as well as for further development of simulations incorporating active elements.


Assuntos
Citoesqueleto de Actina/metabolismo , Simulação de Dinâmica Molecular , Miosinas/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Método de Monte Carlo , Dinâmica não Linear , Substâncias Viscoelásticas/metabolismo
20.
Biophys J ; 110(12): 2729-2738, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27332131

RESUMO

Coordinated motions of close-packed multicellular systems typically generate cooperative packs, swirls, and clusters. These cooperative motions are driven by active cellular forces, but the physical nature of these forces and how they generate collective cellular motion remain poorly understood. Here, we study forces and motions in a confined epithelial monolayer and make two experimental observations: 1) the direction of local cellular motion deviates systematically from the direction of the local traction exerted by each cell upon its substrate; and 2) oscillating waves of cellular motion arise spontaneously. Based on these observations, we propose a theory that connects forces and motions using two internal state variables, one of which generates an effective cellular polarization, and the other, through contractile forces, an effective cellular inertia. In agreement with theoretical predictions, drugs that inhibit contractility reduce both the cellular effective elastic modulus and the frequency of oscillations. Together, theory and experiment provide evidence suggesting that collective cellular motion is driven by at least two internal variables that serve to sustain waves and to polarize local cellular traction in a direction that deviates systematically from local cellular velocity.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Modelos Biológicos , Resinas Acrílicas , Animais , Butadienos/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Contagem de Células , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Tamanho Celular , Colágeno Tipo I/metabolismo , Cães , Módulo de Elasticidade , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Nitrilas/farmacologia , Periodicidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA