Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Microorganisms ; 7(11)2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661854

RESUMO

Bioaugmentation is a bioremediation option based on increasing the natural in-situ microbial population that possesses the ability to degrade the contaminating pollutant. In this study, a diesel-degrading consortium was obtained from an oil-contaminated soil. The diesel-degrading consortium was grown on wood waste that was plasma-pretreated. This plasma treatment led to an increase of bacterial attachment and diesel degradation rates. On the 7th day the biofilm viability on the plasma-treated wood waste reached 0.53 ± 0.02 OD 540 nm, compared to the non-treated wood waste which was only 0.34 ± 0.02. Biofilm attached to plasma-treated and untreated wood waste which was inoculated into artificially diesel-contaminated soil (0.15% g/g) achieved a degradation rate of 9.3 mg day-1 and 7.8 mg day-1, respectively. While, in the soil that was inoculated with planktonic bacteria, degradation was only 5.7 mg day-1. Exposing the soil sample to high temperature (50 °C) or to different soil acidity did not influence the degradation rate of the biofilm attached to the plasma-treated wood waste. The two most abundant bacterial distributions at the family level were Xanthomonadaceae and Sphingomonadaceae. To our knowledge, this is the first study that showed the advantages of biofilm attached to plasma-pretreated wood waste for diesel biodegradation in soil.

3.
Bioresour Technol ; 260: 374-379, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29665528

RESUMO

The aim of this work was to examine the potential of the thermophilic green microalga Micractinium sp. to accumulate triacylglycerols (TAGs) and to develop a light strategy to increase TAG productivity in this alga. To this end, dense cultures of Micractinium sp. were grown at 37 °C under nitrogen (N) starvation and exposed to a light intensity of 1000 µmol photons m-2 s-1 of different light regimes. The highest per-biomass TAG-content and maximal volumetric productivities of TAG were displayed by the cultures grown under flashing light of 5 Hz with 50% duty cycle. Based on the results, a sufficiently high-starting culture density should be combined with a high irradiance delivered by an appropriate light regime to enhance the production of biomass enriched TAGs.


Assuntos
Biocombustíveis , Lipídeos , Biomassa , Luz , Nitrogênio , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA