Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(29): 8847-8854, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34259525

RESUMO

A new magnetic nanocomposite with a statistical star polymer structure was designed and synthesized. Nanocomposite fabrication is based on the polymerization of aromatic polyamide chains on the surface of functionalized magnetic copper ferrite nanoparticles (CuFe2O4 MNPs). This magnetic nanostructure was characterized by several analysis methods. All the analytical methods used, for instance, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric, vibrating-sample magnetometer, and scanning electron microscopy (SEM), confirmed the formation of polyamide chains. The obtained images from SEM imaging showed a unique nanoflower morphology which was the proper orientation results of synthesized nanoplates. Finally, the magnetic nanostructure showed a good potential for hyperthermia applications, with a maximum specific absorption rate of 7 W/g for 1 mg/mL of the sample under a magnetic field in different frequencies (100, 200, 300, and 400 MHz) and 5 to 20 min time intervals.


Assuntos
Cobre , Nanopartículas de Magnetita , Compostos Férricos , Humanos , Hipertermia , Fenômenos Magnéticos , Nylons , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Sci Rep ; 14(1): 8166, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589455

RESUMO

This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.


Assuntos
Fibroínas , Hipertermia Induzida , Tragacanto , Alicerces Teciduais , Hidrogéis , Fenômenos Magnéticos
3.
Sci Rep ; 13(1): 20845, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012184

RESUMO

In this research work, a magnetic nanobiocomposite is designed and presented based on the extraction of flaxseed mucilage hydrogel, silk fibroin (SF), and Fe3O4 magnetic nanoparticles (Fe3O4 MNPs). The physiochemical features of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite are evaluated by FT-IR, EDX, FE-SEM, TEM, XRD, VSM, and TG technical analyses. In addition to chemical characterization, given its natural-based composition, the in-vitro cytotoxicity and hemolysis assays are studied and the results are considerable. Following the use of highest concentration of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite (1.75 mg/mL) and the cell viability percentage of two different cell lines including normal HEK293T cells (95.73%, 96.19%) and breast cancer BT549 cells (87.32%, 86.9%) in 2 and 3 days, it can be inferred that this magnetic nanobiocomposite is biocompatible with HEK293T cells and can inhibit the growth of BT549 cell lines. Besides, observing less than 5% of hemolytic effect can confirm its hemocompatibility. Furthermore, the high specific absorption rate value (107.8 W/g) at 200 kHz is generated by a determined concentration of this nanobiocomposite (1 mg/mL). According to these biological assays, this magnetic responsive cytocompatible composite can be contemplated as a high-potent substrate for further biomedical applications like magnetic hyperthermia treatment and tissue engineering.


Assuntos
Fibroínas , Linho , Hipertermia Induzida , Humanos , Fibroínas/química , Hidrogéis/química , Materiais Biocompatíveis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Fenômenos Magnéticos , Seda/química
4.
RSC Adv ; 13(13): 8540-8550, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926298

RESUMO

Herein, a multifunctional nanobiocomposite was designed for biological application, amongst which hyperthermia cancer therapy application was specifically investigated. This nanobiocomposite was fabricated based on chitosan hydrogel (CS), silk fibroin (SF), water-soluble polymer polyvinyl alcohol (PVA) and iron oxide magnetic nanoparticles (Fe3O4 MNPs). CS and SF as natural compounds were used to improve the biocompatibility, biodegradability, adhesion and cell growth properties of the nanobiocomposite that can prepare this nanocomposite for the other biological applications such as wound healing and tissue engineering. Since the mechanical properties are very important in biological applications, PVA polymer was used to increase the mechanical properties of the prepared nanobiocomposite. All components of this nanobiocomposite have good dispersion in water due to the presence of hydrophilic groups such as NH2, OH, and COOH, which is one of the effective factors in increasing the efficiency of hyperthermia cancer therapy. The structural analyzes of the hybrid nanobiocomposite were determined by FT-IR, XRD, EDX, FE-SEM, TGA and VSM. Biological studies such as MTT and hemolysis testing proved that it is hemocompatible and non-toxic for healthy cells. Furthermore, it can cause the death of cancer cells to some extent (20.23%). The ability of the nanobiocomposites in hyperthermia cancer therapy was evaluated. Also, the results showed that it can be introduced as an excellent candidate for hyperthermia cancer therapy.

5.
Int J Biol Macromol ; 224: 1478-1486, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328271

RESUMO

In the current study, sodium alginate (SA) and tannic acid (TA), in the presence of calcium chloride as a cross-linker, were used to fabricate a nanocomposite scaffold. With the addition of silk fibroin (SF), the strength of the synthesized composite was increased. Fe3O4 magnetic nanoparticles (MNPs) led to the usage of this magnetic nanocomposite in hyperthermia applications. Various properties of this scaffold were investigated by field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA), Fourier-transformed infrared (FT-IR), energy dispersive X-Ray (EDX), Vibrating- sample magnetometer (VSM). A hemolytic assay of this magnetic nanocomposite demonstrated that about 100 % of red blood cells (RBCs) survived at a concentration of 2 mg/ml, proving this scaffold is hemocompatible. Furthermore, an MTT assay was utilized to assess the cytotoxicity of the synthesized magnetic nanocomposite. Finally, the hyperthermia behavior of the fabricated magnetic nanocomposite was evaluated, and the specific absorption rate (SAR) was 73.53 W/g. The proposed nanocomposite is a good candidate for wound dressing applications in future studies.


Assuntos
Fibroínas , Hipertermia Induzida , Nanocompostos , Hidrogéis , Alginatos , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Magnéticos
6.
Int J Biol Macromol ; 253(Pt 4): 127005, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37734527

RESUMO

A magnetic xanthan hydrogel/silk fibroin nanobiocomposite (XG hydrogel/SF/Fe3O4) was designed, fabricated, and characterized using analyzing methods such as FT-IR, EDX, FE-SEM, XRD, TGA, and VSM to evaluate the exact structure of product nanobiocomposite. The FE-SEM images reveal the presence of spherical shapes exhibiting a narrow size range and homogeneous distribution, measuring between 30 and 35 nm in diameter. The VSM analysis demonstrates the superparamagnetic properties of the XG hydrogel/SF/Fe3O4 nanobiocomposite, exhibiting a magnetic saturation of 54 emu/g at room temperature. The biological response of the nanobiocomposite scaffolds was assessed through cell viability and red blood cell hemolytic assays. MCF10A cells were exposed to a concentration of 1.75 mg/mL of the nanobiocomposite, and after 2 and 3 days, the cell viability was found to be 96.95 % and 97.02 %, respectively. The hemolytic effect was nearly 0 % even at higher concentrations (2 mg/mL). Furthermore, the magnetic nanobiocomposite showed excellent potential for hyperthermia applications, with a maximum specific absorption rate of 7 W/g for 1 mg/mL of the sample under a magnetic field in different frequencies (100, 200, 300, and 400 MHz) and 5 to 20 min time intervals.


Assuntos
Fibroínas , Hipertermia Induzida , Nanocompostos , Hidrogéis/farmacologia , Hidrogéis/química , Fibroínas/farmacologia , Fibroínas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química , Fenômenos Magnéticos
7.
J Biotechnol ; 367: 71-80, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37028560

RESUMO

In this work, a magnetic nanobiocomposite scaffold based on carboxymethylcellulose (CMC) hydrogel, silk fibroin (SF), and magnetite nanoparticles was fabricated. The structural properties of this new magnetic nanobiocomposite were characterized by various analyses such as FT-IR, XRD, EDX, FE-SEM, TGA and VSM. According to the particle size histogram, most of the particles were between 55 and 77 nm and the value of saturation magnetization of this nanobiocomposite was reported 41.65 emu.g- 1. Hemolysis and MTT tests showed that the designed magnetic nanobiocomposite was compatible with the blood. In addition, the viability percentage of HEK293T normal cells did not change significantly, and the proliferation rate of BT549 cancer cells decreased in its vicinity. EC50 values for HEK293T normal cells after 48 h and 72 h were 3958 and 2566, respectively. Also, these values for BT549 cancer cells after 48 h and 72 h were 0.4545 and 0.9967, respectively. The efficiency of fabricated magnetic nanobiocomposite was appraised in a magnetic fluid hyperthermia manner. The specific absorption rate (SAR) of 69 W/g (for the 1 mg/mL sample at 200 kHz) was measured under the alternating magnetic field (AMF).


Assuntos
Fibroínas , Hipertermia Induzida , Neoplasias , Humanos , Fibroínas/farmacologia , Fibroínas/química , Hidrogéis , Carboximetilcelulose Sódica/farmacologia , Carboximetilcelulose Sódica/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Fenômenos Magnéticos , Neoplasias/tratamento farmacológico
8.
Nanoscale Adv ; 5(1): 153-159, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36605797

RESUMO

In this study, an efficient nanobiocomposite based on graphene oxide (GO), carboxymethylcellulose (CMC) hydrogel, silk fibroin (SF), and Fe3O4 nanoparticles was synthesized. For this purpose and in order to provide a suitable scaffold for the nanobiocomposite, GO was functionalized with a CMC hydrogel via covalent bonding. In the next step, SF was added to the synthesized structure to increase biocompatibility and biodegradability. Fe3O4 was added into the structure by an in situ process and the GO-CMC hydrogel/SF/Fe3O4 nanobiocomposite was synthesized. The synthesized structure was evaluated in terms of toxicity and hemocompatibility and finally, it was used in the hyperthermia technique. This nanocomposite did not destroy healthy HEK293T cells after 48 h and 72 h, while it did annihilate BT549 cancer cells. The GO-CMC hydrogel/SF/Fe3O4 nanobiocomposite has EC50 values of 0.01466 and 0.1415 against HEK293T normal cells and BT549 cancer cells, respectively (after 72 h). The nanocomposite has good potential in hyperthermia applications and at a concentration and a frequency of 1 mg mL-1 and 400 kHz it has a SAR of 67.7 W g-1.

9.
Int J Biol Macromol ; 162: 1959-1971, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814101

RESUMO

In this study, a nanobiocomposite scaffold was fabricated by combining sodium alginate, polyvinyl alcohol, silk fibroin and magnesium hydroxide nanorods. The structural characteristics and properties of the scaffold were identified by field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA), Fourier-transformed infrared (FT-IR) and energy dispersive X-Ray (EDX) analyses. To introduce the application, biocompatibility, mechanical properties and biological activity of the scaffold were obtained. The composite was found to have high porosity, no cytotoxicity, excellent cellular adaptation, and most importantly Mg(OH)2 nanorod had antibacterial activity and inhibited the growth of bacteria. In addition, silk fibroin and alginate increased the scaffold strength due to mechanical tests. Hemolytic assay and cell metabolic activity of this novel nanobiocomposite showed that the hemolytic effect was less than 8% and about 92% of cells survived. Due to considerable biological activities and acceptable mechanical properties, the mentioned nanobiocomposite can be considered as a scaffold for possible use in wound dressing, tissue engineering and drug delivery systems.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Nanotubos/química , Alicerces Teciduais/química , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Bandagens , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Fibroínas/química , Fibroínas/farmacologia , Humanos , Hidróxido de Magnésio/química , Hidróxido de Magnésio/farmacologia , Fenômenos Mecânicos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Engenharia Tecidual
10.
J Adv Res ; 18: 185-201, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31032119

RESUMO

Tissue engineering is a rapidly-growing approach to replace and repair damaged and defective tissues in the human body. Every year, a large number of people require bone replacements for skeletal defects caused by accident or disease that cannot heal on their own. In the last decades, tissue engineering of bone has attracted much attention from biomedical scientists in academic and commercial laboratories. A vast range of biocompatible advanced materials has been used to form scaffolds upon which new bone can form. Carbon nanomaterial-based scaffolds are a key example, with the advantages of being biologically compatible, mechanically stable, and commercially available. They show remarkable ability to affect bone tissue regeneration, efficient cell proliferation and osteogenic differentiation. Basically, scaffolds are templates for growth, proliferation, regeneration, adhesion, and differentiation processes of bone stem cells that play a truly critical role in bone tissue engineering. The appropriate scaffold should supply a microenvironment for bone cells that is most similar to natural bone in the human body. A variety of carbon nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds and their derivatives that are able to act as scaffolds for bone tissue engineering, are covered in this review. Broadly, the ability of the family of carbon nanomaterial-based scaffolds and their critical role in bone tissue engineering research are discussed. The significant stimulating effects on cell growth, low cytotoxicity, efficient nutrient delivery in the scaffold microenvironment, suitable functionalized chemical structures to facilitate cell-cell communication, and improvement in cell spreading are the main advantages of carbon nanomaterial-based scaffolds for bone tissue engineering.

11.
Mater Sci Eng C Mater Biol Appl ; 73: 182-188, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183596

RESUMO

Undesirable deformation of the stent can induce a significant amount of injure not only to the blood vessel but also to the plaque. The objective of this study was to reduce/minimize these undesirable deformations by the application of Functionally Graded Materials (FGM). To do this, Finite Element (FE) method was employed to simulate the expansion of a stent and the corresponding displacement of the stenosis plaque. Three hyperelastic plaque types as well as five elastoplastic stents were simulated. Dogboning, foreshortening, maximum stress in the plaque, and the pressure which is needed to fully expand the stent for different stent materials, were acquired. While all FGMs had lower dogboning in comparison to the stents made of the uniform materials, the stent with the lowest heterogeneous index displayed the lowest amount of dogboning. Steel stent showed the lowest foreshortening and fully expansion pressure but the difference was much lower than that the one for dogboning. Therefore, the FGM with the heterogeneous index of 0.5 is expected to exhibit the most suitable results. In addition, the results revealed that the material parameters has crucial effects on the deformation of the stent and, as a result, as a design point of view the FGM parameters can be tailored to achieve the goal of the biomechanical optimization.


Assuntos
Análise Numérica Assistida por Computador , Desenho de Prótese , Stents , Vasos Coronários/fisiologia , Elasticidade , Análise de Elementos Finitos , Humanos , Placa Aterosclerótica/fisiopatologia , Pressão , Estresse Mecânico , Fatores de Tempo
12.
Biosci Rep ; 36(6)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27836981

RESUMO

In the present study, three layers of the ascending aorta in respect to the time and space at various blood pressures have been simulated. Two well-known commercial finite element (FE) software have used to be able to provide a range of reliable numerical results while independent on the software type. The radial displacement compared with the time as well as the peripheral stress and von Mises stress of the aorta have calculated. The aorta model was validated using the differential quadrature method (DQM) solution and, then, in order to design functionally graded materials (FGMs) with different heterogeneous indexes for the artificial vessel, two different materials have been employed. Fluid-structure interaction (FSI) simulation has been carried out on the FGM and a natural vessel of the human body. The heterogeneous index defines the variation of the length in a function. The blood pressure was considered to be a function of both the time and location. Finally, the response characteristics of functionally graded biomaterials (FGBMs) models with different values of heterogeneous material parameters were determined and compared with the behaviour of a natural vessel. The results showed a very good agreement between the numerical findings of the FGM materials and that of the natural vessel. The findings of the present study may have implications not only to understand the performance of different FGMs in bearing the stress and deformation in comparison with the natural human vessels, but also to provide information for the biomaterials expert to be able to select a suitable material as an implant for the aorta.


Assuntos
Aorta/fisiologia , Pressão Arterial/fisiologia , Prótese Vascular , Simulação por Computador , Modelos Cardiovasculares , Materiais Biocompatíveis , Fenômenos Biomecânicos , Vasos Coronários/fisiologia , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos , Análise Numérica Assistida por Computador , Estresse Mecânico , Fatores de Tempo
13.
Work ; 49(4): 663-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24004751

RESUMO

BACKGROUND: Stability during standing is achieved by a complex process which involves the performance of various systems. Using a force plate for analysing the stability for a period of one minute has been reported exclusively by many investigators. Most of people stand for a long period of time when chatting with somebody, doing a job and when waiting in a queue. However nobody has analysed the stability during quiet standing for a prolonged standing (5 minutes). OBJECTIVE: The main aim of this research study was to analyse the performance of the subjects regarding stability for a period of 5 minutes. METHOD: A group of 40 normal subjects from the staff and students of Rehabilitation Faculty of Isfahan University of Medical Sciences were recruited in this research project. They were asked to stand on the force plate (Kistler) for a period of 5 minutes. They were instructed to look straight ahead and with their head erect and their arms at their sides in a comfortable position. The excursions of the COP sway in both planes were measured for all 20 seconds periods of data collection. RESULTS: The results of this research study showed that stability analysing based on the sway of the COP, while the test was collected for one minute, is not recommended. There is a significant difference between the excursions of the COP during the first to fifth minutes. The stability of the subject was optimum in the third and fourth minutes of standing. CONCLUSION: Using the COP sway, based on the first minute of standing, is neither a good representative of the more stable position nor the unstable position. It is recommended to discuss the stability of subjects based on their ability to return from an unstable position to a more stable position.


Assuntos
Equilíbrio Postural/fisiologia , Postura/fisiologia , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA