Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36220772

RESUMO

The recent biotechnological progress has allowed life scientists and physicians to access an unprecedented, massive amount of data at all levels (molecular, supramolecular, cellular and so on) of biological complexity. So far, mostly classical computational efforts have been dedicated to the simulation, prediction or de novo design of biomolecules, in order to improve the understanding of their function or to develop novel therapeutics. At a higher level of complexity, the progress of omics disciplines (genomics, transcriptomics, proteomics and metabolomics) has prompted researchers to develop informatics means to describe and annotate new biomolecules identified with a resolution down to the single cell, but also with a high-throughput speed. Machine learning approaches have been implemented to both the modelling studies and the handling of biomedical data. Quantum computing (QC) approaches hold the promise to resolve, speed up or refine the analysis of a wide range of these computational problems. Here, we review and comment on recently developed QC algorithms for biocomputing, with a particular focus on multi-scale modelling and genomic analyses. Indeed, differently from other computational approaches such as protein structure prediction, these problems have been shown to be adequately mapped onto quantum architectures, the main limit for their immediate use being the number of qubits and decoherence effects in the available quantum machines. Possible advantages over the classical counterparts are highlighted, along with a description of some hybrid classical/quantum approaches, which could be the closest to be realistically applied in biocomputation.


Assuntos
Biologia Computacional , Metodologias Computacionais , Teoria Quântica , Genômica , Algoritmos
2.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514750

RESUMO

We present MoReLab, a tool for user-assisted 3D reconstruction. This reconstruction requires an understanding of the shapes of the desired objects. Our experiments demonstrate that existing Structure from Motion (SfM) software packages fail to estimate accurate 3D models in low-quality videos due to several issues such as low resolution, featureless surfaces, low lighting, etc. In such scenarios, which are common for industrial utility companies, user assistance becomes necessary to create reliable 3D models. In our system, the user first needs to add features and correspondences manually on multiple video frames. Then, classic camera calibration and bundle adjustment are applied. At this point, MoReLab provides several primitive shape tools such as rectangles, cylinders, curved cylinders, etc., to model different parts of the scene and export 3D meshes. These shapes are essential for modeling industrial equipment whose videos are typically captured by utility companies with old video cameras (low resolution, compression artifacts, etc.) and in disadvantageous lighting conditions (low lighting, torchlight attached to the video camera, etc.). We evaluate our tool on real industrial case scenarios and compare it against existing approaches. Visual comparisons and quantitative results show that MoReLab achieves superior results with regard to other user-interactive 3D modeling tools.

3.
IEEE Comput Graph Appl ; 40(1): 140-147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31944944

RESUMO

We introduce a novel algorithm that turns a flash selfie taken with a smartphone into a studio-like photograph with uniform lighting. Our method uses a convolutional neural network trained on a set of pairs of photographs acquired in a controlled environment. For each pair, we have one photograph of a subject's face taken with the camera flash enabled and another one of the same subject in the same pose illuminated using a photographic studio-lighting setup. We show how our method can amend lighting artifacts introduced by a close-up camera flash, such as specular highlights, shadows, and skin shine.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31603779

RESUMO

Image metrics based on Human Visual System (HVS) play a remarkable role in the evaluation of complex image processing algorithms. However, mimicking the HVS is known to be complex and computationally expensive (both in terms of time and memory), and its usage is thus limited to a few applications and to small input data. All of this makes such metrics not fully attractive in real-world scenarios. To address these issues, we propose Deep Image Quality Metric (DIQM), a deep-learning approach to learn the global image quality feature (mean-opinion-score). DIQM can emulate existing visual metrics efficiently, reducing the computational costs by more than an order of magnitude with respect to existing implementations.

5.
IEEE Comput Graph Appl ; 36(4): 78-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26571513

RESUMO

Few tone mapping operators (TMOs) take color management into consideration, limiting compression to luminance values only. This could lead to changes in image chroma and hues, which are typically managed with a post-processing step. However, current post-processing techniques for tone reproduction do not explicitly consider the target display gamut. Gamut mapping, on the other hand, deals with mapping images from one color gamut to another, usually smaller, gamut but has traditionally focused on smaller scale, chromatic changes. The authors present a combined gamut- and tone-management framework for color-accurate reproduction of high dynamic range images that can prevent hue and luminance shifts while taking gamut boundaries into consideration. Their approach is conceptually and computationally simple, parameter-free, and compatible with existing TMOs.

6.
IEEE Comput Graph Appl ; 32(2): 34-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24804945

RESUMO

A new method for interactive rendering of complex lighting effects combines two algorithms. The first performs accurate ray tracing in heterogeneous refractive media to compute high-frequency phenomena. The second applies lattice-Boltzmann lighting to account for low-frequency multiple-scattering effects. The two algorithms execute in parallel on modern graphics hardware. This article includes a video animation of the authors' real-time algorithm rendering a variety of scenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA