Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 62(8): 1999-2049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33399015

RESUMO

Carotenoids are isoprenoids widely distributed in foods that have been always part of the diet of humans. Unlike the other so-called food bioactives, some carotenoids can be converted into retinoids exhibiting vitamin A activity, which is essential for humans. Furthermore, they are much more versatile as they are relevant in foods not only as sources of vitamin A, but also as natural pigments, antioxidants, and health-promoting compounds. Lately, they are also attracting interest in the context of nutricosmetics, as they have been shown to provide cosmetic benefits when ingested in appropriate amounts. In this work, resulting from the collaborative work of participants of the COST Action European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN, www.eurocaroten.eu, https://www.cost.eu/actions/CA15136/#tabs|Name:overview) research on carotenoids in foods and feeds is thoroughly reviewed covering aspects such as analysis, carotenoid food sources, carotenoid databases, effect of processing and storage conditions, new trends in carotenoid extraction, daily intakes, use as human, and feed additives are addressed. Furthermore, classical and recent patents regarding the obtaining and formulation of carotenoids for several purposes are pinpointed and briefly discussed. Lastly, emerging research lines as well as research needs are highlighted.


Assuntos
Carotenoides , Alimentos , Antioxidantes , Carotenoides/análise , Dieta , Humanos , Vitamina A
2.
J Sci Food Agric ; 101(9): 3933-3941, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33348451

RESUMO

BACKGROUND: A floating system is a suitable low-cost hydroponic method for growing baby leaf vegetables. Among other, an important characteristic of the system is the use of large volume of nutrient solution which is characterized by high heat capacity. The aim of this study was to evaluate the effect of different root-zone temperatures on baby leaves of lettuce and rocket plants grown in a floating system under mild (spring) or extreme environmental conditions (summer and winter). RESULTS: Root-zone temperature was recorded in two tanks, one powered by a photovoltaic system and one where root-zone temperature was not controlled - this was used as a control tank. Photosynthetic parameters, yield, nutritional quality, and mineral composition were determined. In both baby leaf vegetables, during extreme weather conditions, yield was higher in the tanks with controlled root-zone temperature conditions than the control (+18.9% for rocket, and + 31.4% for baby lettuce), while quality parameters and chemical composition were not significantly affected. Stomatal conductance and net photosynthesis values were positively affected only during summer. On the other hand, control of root-zone temperature under mild weather conditions had no significant effect on baby lettuce and rocket. CONCLUSION: Control of the root-zone temperature could be a useful tool to improve productivity for baby lettuce and rocket crops cultivated in floating systems under extreme weather conditions. © 2020 Society of Chemical Industry.


Assuntos
Hidroponia/métodos , Lactuca/crescimento & desenvolvimento , Verduras/crescimento & desenvolvimento , Meios de Cultura/química , Meios de Cultura/metabolismo , Ambiente Controlado , Clima Extremo , Hidroponia/instrumentação , Lactuca/metabolismo , Minerais/análise , Valor Nutritivo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estações do Ano , Temperatura , Verduras/metabolismo
3.
Plants (Basel) ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771518

RESUMO

Salinization of cultivated soils is a global phenomenon mainly caused by agricultural practices and deteriorates plant production. Biostimulants are products which can be applied exogenously to enhance the plants' defense mechanism and improve their developmental characteristics, also under abiotic stresses. We studied the potential of two biostimulants, Ascophyllum nodosum (Asc) seaweed and a silicon-based (Si), to alleviate the saline conditions endured by watermelon transplants. Three salinity (0 mM, 50 mM, and 100 mM NaCl) treatments were applied in watermelon seedlings transplanted in pots, while the two biostimulants were sprayed in the foliar in the beginning of the experiment. Relative water content was improved by Asc in the high salinity level. The plant area, leaf number, and shoot dry weight deteriorated in relation to the salinity level. However, the root system (total root length and surface area) was enhanced by 50 mM salt, as well as Asc in some cases. The OJIP transient of the photosynthetic apparatus was also evaluated. Some OJIP parameters diminished in the high salinity level after Asc application. It is concluded that after salt stress Asc provoked a positive phenotypic response, while Si did not alleviate the salinity stress of transplanted watermelon.

4.
Plants (Basel) ; 12(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986894

RESUMO

By applying three different LED light treatments, designated as blue (B), red (R)/blue (B), red (R) and white (W) light, as well as the control, the effect on Diplotaxis tenuifolia phenotype (yield and quality), and physiological, biochemical, and molecular status, as well as growing system resource use efficiency, was examined. We observed that basic leaf characteristics, such as leaf area, leaf number, relative chlorophyll content, as well as root characteristics, such as total root length and root architecture, remained unaffected by different LEDs. Yield expressed in fresh weight was slightly lower in LED lights than in the control (1113 g m-2), with R light producing the least (679 g m-2). However, total soluble solids were significantly affected (highest, 5.5° Brix, in R light) and FRAP was improved in all LED lights (highest, 191.8 µg/g FW, in B) in comparison to the control, while the nitrate content was less (lowest, 949.2 µg/g FW, in R). Differential gene expression showed that B LED light affected more genes in comparison to R and R/B lights. Although total phenolic content was improved under all LED lights (highest, 1.05 mg/g FW, in R/B), we did not detect a significant amount of DEGs in the phenylpropanoid pathway. R light positively impacts the expression of the genes encoding for photosynthesis components. On the other hand, the positive impact of R light on SSC was possibly due to the expression of key genes being induced, such as SUS1. In summary, this research is an integrative and innovative study, where the exploration of the effect of different LED lights on rocket growing under protected cultivation, in a closed chamber cultivation system, was performed at multiple levels.

5.
Plants (Basel) ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685989

RESUMO

Light quality exerts considerable effects on crop development and phytochemical content. Moreover, crops grown as microgreens are ideal for plant factories with artificial lighting, since they contain greater amounts of bioactive compounds compared to fully-grown plants. The aim of the present study was to evaluate the effect of broad-spectra light with different red/blue ratios on the yield, morphology, and phytochemical content of seven microgreens. Mustard, radish, green basil, red amaranth, garlic chives, borage, and pea shoots were grown in a vertical farming system under three light sources emitting red/blue ratios of about 2, 5, and 9 units (RB2, RB5, and RB9, respectively). Mustard exhibited the most profound color responses. The yield was enhanced in three microgreens under RB9 and in garlic under RB2. Both the hypocotyl length and the leaf and cotyledon area were significantly enhanced by increasing the red light in three microgreens each. Total soluble solids (Brix) were reduced in 4 microgreens under RB2. The total phenolic content and antioxidant capacity were reduced under RB2 in 6 and 5 microgreens, respectively. The chlorophylls were variably affected but total the carotenoid content was reduced in RB9 in three microgreens. Overall, light wavelength differentially affected the microgreens' quality, while small interplays in spectral bands enhanced their phytochemical content.

6.
Plants (Basel) ; 10(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673386

RESUMO

Grafting is the main means of propagation for watermelon crops. The aim of the present study was to evaluate whether light quality during graft healing variably affects different scion × rootstock genotype combinations. Two watermelon hybrid scions (Sunny Florida F1 and Celine F1) and two interspecific squash rootstocks (Radik and TZ-148) were used, and four scion × rootstock genotype combinations derived. After grafting, we tested seven light-emitting diodes (LEDs), which provided narrow-band red (R) and blue (B); R-B with 36% (36B), 24% (24B), and 12% (12B) blue; 12B with additional far-red (12B+FR); and white (W), in a healing chamber. In three genotype combinations, shoot length, leaf area, and shoot biomass were mainly enhanced under red-blue LEDs, while stem diameter was greater under R. In contrast, dry weight of roots, Dickson's quality index, and ratio of shoot dry weight/length were variably affected in each genotype combination. From the results, it is concluded that light treatments differentially affected each genotype combination, but some parameters involving biomass production show genotypic dependency.

7.
Sci Rep ; 11(1): 21754, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741092

RESUMO

The wound inflicted during grafting of watermelon seedlings requires rapid and sufficient vascular development which is affected by light quality. Our objective was to investigate the effect of light spectra emitted by light-emitting diodes (LEDs) during healing of grafted watermelon (Citrullus lanatus) seedlings on their vascular development, physiological and phytohormonal profile, and root architecture. Three LEDs emitting red (R), blue (B), and RB with 12% blue (12B) were tested in a healing chamber. During the first three days, the photosynthetic apparatus portrayed by PIABS, φP0, ψE0, and ΔVIP was less damaged and faster repaired in B-treated seedlings. B and 12B promoted vascular reconnection and root development (length, surface area and volume). This was the result of signaling cascade between phytohormones such as indole-3-acetic acid and others. After vascular reconnection the seedlings switched lights for 3 more days and the picture was reversed. Seedlings treated with B for the first 3 days and R for days 4 to 6 had better photosynthetic characteristics, root system development, morphological, shoot and root biomass, and quality (i.e. Dickson's quality index) characteristics. We concluded that blue light is important during the first 3 days of healing, while the presence of red is necessary after vascular reconnection.


Assuntos
Citrullus/efeitos da radiação , Produção Agrícola/métodos , Feixe Vascular de Plantas/crescimento & desenvolvimento , Plântula/efeitos da radiação , Citrullus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
8.
Front Plant Sci ; 12: 691069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777405

RESUMO

Watermelon (Citrullus lanatus) is a valuable horticultural crop with nutritional benefits grown worldwide. It is almost exclusively cultivated as grafted scions onto interspecific squash rootstock (Cucurbita maxima × Cucurbita moschata) to improve the growth and yield and to address the problems of soilborne diseases and abiotic stress factors. This study aimed to examine the effect of grafting (homo- and hetero-grafting) on the transcriptome level of the seedlings. Therefore, we compared homo-grafted watermelon (WW) with non-grafted watermelon control (W), homo-grafted squash (SS) with non-grafted squash control (S), hetero-grafted watermelon onto squash (WS) with SS, and WS with WW. Different numbers of differentially expressed genes (DEGs) were identified in each comparison. In total, 318 significant DEGs were detected between the transcriptomes of hetero-grafts and homo-grafts at 16 h after grafting. Overall, a significantly higher number of downregulated transcripts was detected among the DEGs. Only one gene showing increased expression related to the cytokinin synthesis was common in three out of four comparisons involving WS, SS, and S. The highest number of differentially expressed (DE) transcripts (433) was detected in the comparison between SS and S, followed by the 127 transcripts between WW and W. The study provides a description of the transcriptomic nature of homo- and hetero-grafted early responses, while the results provide a start point for the elucidation of the molecular mechanisms and candidate genes for the functional analyses of hetero-graft and homo-graft systems in Cucurbitaceae and generally in the plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA