Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Clin Microbiol Antimicrob ; 23(1): 11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303011

RESUMO

Global impact of COVID-19 pandemic has heightened the urgency for efficient virus detection and identification of variants such as the Q57H mutation. Early and efficient detection of SARS-CoV-2 among densely populated developing countries is paramount objective. Although RT-PCR assays offer accuracy, however, dependence on expansive kits and availability of allied health resources pose an immense challenge for developing countries. In the current study, RT-LAMP based detection of SARS-Cov-2 with subsequent confirmation of Q57H variant through ARMS-PCR was performed. Among the 212 collected samples, 134 yielded positive results, while 78 tested negative using RT-LAMP. Oropharyngeal swabs of suspected individuals were collected and processed for viral RNA isolation. Isolated viral RNA was processed further by using either commercially available WarmStart Master Mix or our in house developed LAMP master mix separately. Subsequently, the end results of each specimen were evaluated by colorimetry. For LAMP assays, primers targeting three genes (ORF1ab, N and S) were designed using PrimerExplorer software. Interestingly, pooling of these three genes in single reaction tube increased sensitivity (95.5%) and specificity (93.5%) of LAMP assay. SARS-CoV-2 positive specimens were screened further for Q57H mutation using ARMS-PCR. Based on amplicon size variation, later confirmed by sequencing, our data showed 18.5% samples positive for Q57H mutation. Hence, these findings strongly advocate use of RT-LAMP-based assay for SARS-CoV-2 screening within suspected general population. Furthermore, ARMS-PCR also provides an efficient mean to detect prevalent mutations against SARS-Cov-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , RNA Viral/genética , Reação em Cadeia da Polimerase , Teste para COVID-19
2.
J Infect Public Health ; 17(4): 559-572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367570

RESUMO

Internet of Medical Things (IoMT) is an emerging subset of Internet of Things (IoT), often called as IoT in healthcare, refers to medical devices and applications with internet connectivity, is exponentially gaining researchers' attention due to its wide-ranging applicability in biomedical systems for Smart Healthcare systems. IoMT facilitates remote health biomedical system and plays a crucial role within the healthcare industry to enhance precision, reliability, consistency and productivity of electronic devices used for various healthcare purposes. It comprises a conceptualized architecture for providing information retrieval strategies to extract the data from patient records using sensors for biomedical analysis and diagnostics against manifold diseases to provide cost-effective medical solutions, quick hospital treatments, and personalized healthcare. This article provides a comprehensive overview of IoMT with special emphasis on its current and future trends used in biomedical systems, such as deep learning, machine learning, blockchains, artificial intelligence, radio frequency identification, and industry 5.0.


Assuntos
Inteligência Artificial , Internet , Humanos , Reprodutibilidade dos Testes , Instalações de Saúde , Aprendizado de Máquina
3.
J Infect Public Health ; 17(6): 1108-1116, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714123

RESUMO

BACKGROUND: New Delhi metallo-beta-lactamase-1 (NDM1) confers resistance to several bacterial species against a broad range of beta-lactam antibiotics and turning them into superbugs that pose a significant threat to healthcare systems worldwide. As such, it is a potentially relevant biological target for counteracting bacterial infections. Given the lack of effective treatment options against NDM1 producing bacteria, finding a reliable inhibitor for the NDM1 enzyme is crucial. METHODS: Using molecular dynamics simulations, the binding selectivities and affinities of three ligands, viz. PNK, 3S0, and N1G were investigated against NDM1. RESULTS: The results indicate that N1G binds with more affinity to NDM1 than PNK and 3S0. The binding energy decomposition analysis revealed that residues I35, W93, H189, K211, and N220 showed significant binding energies with PNK, 3S0, and N1G, and hence are crucially involved in the binding of the ligands to NDM1. Molecular dynamics trajectory analysis further elicited that the ligands influence dynamic flexibility of NDM1 morphology, which contributes to the partial selectivities of PNK, 3S0, and N1G. CONCLUSIONS: This in silico study offers a vital information for developing potential NDM1 inhibitors with high selectivity. Nevertheless, in vitro and in vivo experimental validation is mandated to extend the possible applications of these ligands as NDM1 inhibitors that succor in combating antimicrobial resistance.


Assuntos
Simulação de Dinâmica Molecular , Inibidores de beta-Lactamases , beta-Lactamases , beta-Lactamases/metabolismo , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Antibacterianos/farmacologia , Antibacterianos/química , Ligação Proteica , Farmacorresistência Bacteriana , Ligantes
4.
Front Microbiol ; 15: 1399937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113841

RESUMO

Introduction: Fabrication of plant-based metal nanoparticles has yielded promising results, establishing this approach as viable, sustainable, and non-toxic in the biomedical sector for targeted drug delivery, diagnostic imaging, biosensing, cancer therapy, and antimicrobial treatments. Methods: The present work demonstrates the suitability of Hippophae rhamnoides berries for the instant green synthesis of silver nanoparticles to check their antioxidant, lipid peroxidation, and antimicrobial potential. The preliminary characterization of Hippophae rhamnoides-mediated AgNPs was validated by monitoring the color shift in the solution from pale yellow to reddish brown, which was further confirmed by UV-vis spectroscopy and the plasmon peaks were observed at 450 nm. Field Emission Scanning Electron Microscopy (FESEM) and X-ray diffraction (XRD) were used to evaluate the surface topography and structure of AgNPs. Herein, the antioxidant potential of synthesized AgNPs was investigated using DPPH free radical assay and the antimicrobial efficacy of similar was checked against E. coli and S. aureus by following MIC (minimum inhibitory concentration) and MBC (Minimum bactericidal concentration) assay. Along with the inhibitory percentage of lipid peroxidation was analysed by following TBARS (Thiobarbituric acid reactive species) assay. Results & discussion: The results revealed that the AgNPs were spherical in shape with an average size distribution within the range of 23.5-28 nm and a crystalline structure. Negative zeta potential (-19.7 mV) revealed the physical stability of synthesized AgNPs as the repulsive force to prevent immediate aggregation. The bioactive functional moieties involved in reducing bulk AgNO3 into AgNPs were further validated by FTIR. TBARS was adapted to test lipid peroxidation, and Hippophae rhamnoides-mediated AgNPs showed a 79% inhibition in lipid peroxidation compared to Hippophae rhamnoides berries extract as 65%. Furthermore, the antibacterial tests showed 37 ± 0.01 mm and 35 ± 0.0132 mm, zones of inhibition against E. coli MTCC 1698 and S. aureus MTCC 3160 with MIC and MBC values of 1 mg/mL, respectively.

5.
PLoS One ; 19(5): e0303173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739587

RESUMO

In this study, new series of N'-(2-(substitutedphenoxy)acetyl)-4-(1H-pyrrol-1-yl)benzohydrazides (3a-j) 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N'-(2-(substitutedphenoxy)acetyl)benzohydrazides (5a-j) were synthesized, characterized and assessed as inhibitors of enoyl ACP reductase and DHFR. Most of the compounds exhibited dual inhibition against the enzymes enoyl ACP reductase and DHFR. Several synthesized substances also demonstrated significant antibacterial and antitubercular properties. A molecular docking analysis was conducted in order to determine the potential mechanism of action of the synthesized compounds. The results indicated that there were binding interactions seen with the active sites of dihydrofolate reductase and enoyl ACP reductase. Additionally, important structural details were identified that play a critical role in sustaining the dual inhibitory activity. These findings were useful for the development of future dual inhibitors. Therefore, this study provided strong evidence that several synthesized molecules could exert their antitubercular properties at the cellular level through multi-target inhibition. By shedding light on the mechanisms through which these compounds exert their inhibitory effects, this research opens up promising avenues for the future development of dual inhibitors with enhanced antibacterial and antitubercular properties. The study's findings underscore the importance of multi-target approaches in drug design, providing a strong foundation for the design and optimization of novel compounds that can effectively target bacterial infections at the cellular level.


Assuntos
Antituberculosos , Pirróis , Tetra-Hidrofolato Desidrogenase , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Domínio Catalítico , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/síntese química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Pirróis/síntese química , Pirróis/química , Pirróis/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/química
6.
Heliyon ; 10(3): e25607, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356540

RESUMO

Ganoderma lucidum is a versatile mushroom. Polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicinal mushrooms since ancient times. They are currently used as nutraceuticals and functional foods. G. lucidum extracts and their bioactive compounds have been used as an alternative to antioxidants and antimicrobial agents. Secondary metabolites with many medicinal properties make it a possible substitute that could be applied as immunomodulatory, anticancer, antimicrobial, anti-oxidant, anti-inflammatory, and anti-diabetic. The miraculous properties of secondary metabolites fascinate researchers for their development and production. Recent studies have paid close attention to the different physical, genetic, biochemical, and nutritional parameters that potentiate the production of secondary metabolites. This review is an effort to collect biologically active constituents from G. lucidum that reveal potential actions against diseases with the latest improvement in a novel technique to get maximum production of secondary metabolites. Studies are going ahead to determine the efficacy of numerous compounds and assess the valuable properties achieved by G. lucidum in favor of antimicrobial and antioxidant outcomes.

7.
Int J Biol Macromol ; 268(Pt 1): 131644, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642691

RESUMO

Diabetes is a chronic metabolic disorder. Diabetes complications can affect many organs and systems in the body. Ganoderma lucidum (G. lucidum) contains various compounds that have been studied for their potential antidiabetic effects, including polysaccharides, triterpenoids (ganoderic acids, ganoderol B), proteoglycans, and G. lucidum extracts. G. lucidum polysaccharides (GLPs) and triterpenoids have been shown to act through distinct mechanisms, such as improving glucose metabolism, modulating the mitogen-activated protein kinase (MAPK) system, inhibiting the nuclear factor-kappa B (NF-κB) pathway, and protecting the pancreatic beta cells. While GLPs exhibit a significant role in controlling diabetic nephropathy and other associated complications. This review states the G. lucidum antidiabetic mechanisms of action and potential biologically active compounds that contribute to diabetes management and associated complications. To make G. lucidum an appropriate replacement for the treatment of diabetes with fewer side effects, more study is required to completely comprehend the number of physiologically active compounds present in it as well as the underlying cellular mechanisms that influence their effects on diabetes.


Assuntos
Diabetes Mellitus , Hipoglicemiantes , Polissacarídeos , Reishi , Triterpenos , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/uso terapêutico , Humanos , Reishi/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA