Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 96(6): e29755, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922896

RESUMO

Throughout the COVID-19 pandemic, rhinovirus (RV) remained notable persistence, maintaining its presence while other seasonal respiratory viruses were largely suppressed by pandemic restrictions during national lockdowns. This research explores the epidemiological dynamics of RV infections among pediatric populations on Hainan Island, China, specifically focusing on the impact before and after the zero-COVID policy was lifted. From January 2021 to December 2023, 19 680 samples were collected from pediatric patients hospitalized with acute lower respiratory tract infections (ARTIs) at the Hainan Maternal and Child Health Hospital. The infection of RV was detected by tNGS. RV species and subtypes were identified in 32 RV-positive samples representing diverse time points by analyzing the VP4/VP2 partial regions. Among the 19 680 pediatric inpatients with ARTIs analyzed, 21.55% were found to be positive for RV infection, with notable peaks observed in April 2021 and November 2022. A gradual annual decline in RV infections was observed, alongside a seasonal pattern of higher prevalence during the colder months. The highest proportion of RV infections was observed in the 0-1-year age group. Phylogenetic analysis on 32 samples indicated a trend from RV-A to RV-C in 2022. This observation suggests potential evolving dynamics within the RV species although further studies are needed due to the limited sample size. The research emphasizes the necessity for ongoing surveillance and targeted management, particularly for populations highly susceptible to severe illnesses caused by RV infections.


Assuntos
COVID-19 , Variação Genética , Filogenia , Infecções por Picornaviridae , Infecções Respiratórias , Rhinovirus , Humanos , Rhinovirus/genética , Rhinovirus/classificação , Rhinovirus/isolamento & purificação , China/epidemiologia , Lactente , Pré-Escolar , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , Criança , Feminino , Masculino , COVID-19/epidemiologia , COVID-19/virologia , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Recém-Nascido , Estações do Ano , Adolescente , Prevalência , Criança Hospitalizada/estatística & dados numéricos , SARS-CoV-2/genética , Hospitalização/estatística & dados numéricos
2.
Pathogens ; 13(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39338931

RESUMO

Human parainfluenza viruses (HPIVs) are the leading causes of acute respiratory tract infections (ARTIs), particularly in children. During the COVID-19 pandemic, non-pharmaceutical interventions (NPIs) significantly influenced the epidemiology of respiratory viruses. This study analyzed 19,339 respiratory specimens from pediatric patients with ARTIs to detect HPIVs using PCR or tNGS, focusing on the period from 2021 to 2023. HPIVs were identified in 1395 patients (7.21%, 1395/19,339), with annual detection rates of 6.86% (303/4419) in 2021, 6.38% (331/5188) in 2022, and 7.82% (761/9732) in 2023. Notably, both the total number of tests and HPIV-positive cases increased in 2023 compared to 2021 and 2022. Seasonal analysis revealed a shift in HPIV prevalence from winter and spring in 2021-2022 to spring and summer in 2023. Most HPIV-positive cases were in children aged 0-7 years, with fewer infections among those aged 7-18 years. Since June 2022, HPIV-3 has been the most prevalent serotype (59.55%, 524/880), whereas HPIV-2 had the lowest proportion (0.80%, 7/880). The proportions of HPIV-1 (24.89%, 219/880) and HPIV-4 (15.45%, 136/880) were similar. Additionally, the incidence of co-infections with other common respiratory pathogens has increased since 2021. This study highlights rising HPIV detection rates post-COVID-19 and underscores the need for continuous surveillance of HPIVs to inform public health strategies for future epidemic seasons.

3.
J Biomol Struct Dyn ; 41(20): 11137-11147, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37211826

RESUMO

Two different systems of bovine serum albumin (BSA) were used for multiple spectroscopic and computational studies to determine interaction of BSA and atropine (Atrop), that is, BSA-Atrop system and Atrop-loaded chitosan nanoparticles (Atrop@CS NPs), that is, BSA-Atrop@CS NPs system. The study suggests that BSA-Atrop system and BSA-Atrop@CS NPs system involve non-fluorescent complexes of Ksv = 3.2 × 103 Lmol-1 and 3.1 × 104 Lmol-1, kq = 3.2 × 1011 Lmol-1 s-1 and 3.1 × 1012 Lmol-1 s-1, the binding constant Kb = 1.4 × 103 Lmol-1, 2.0 × 102 Lmol-1, respectively, and number of binding sites n ∼ 1 for both the systems. The negligible conformational changes induced in BSA were also observed. Synchronous fluorescence spectroscopic study revealed that more quenching occurred in intrinsic fluorescence of tryptophan (Trp, W) than that in tyrosine residue (Tyr, Y). UV-vis spectroscopic study verified the presence of static quenching from the presence of BSA-Atrop and BSA-Atrop@CS NPs complexes. CD spectra confirmed the conformational changes induced in BSA upon increment of concentrations of Atrop and Atrop@CS NPs separately into the constant concentration of BSA. The coherent observations from various spectroscopic studies were in agreement with those of computational study, showing BSA-Atrop complex formation and other related details. The hydrogen bonds (H-bonds), van der Walls (vdW) interactions and π-type of interactions were mainly involved in stabilization of the formed BSA-Atrop complex.Communicated by Ramaswamy H. Sarma.


Assuntos
Quitosana , Nanopartículas , Soroalbumina Bovina/química , Quitosana/metabolismo , Ligação Proteica , Espectrometria de Fluorescência/métodos , Sítios de Ligação , Derivados da Atropina , Termodinâmica , Espectrofotometria Ultravioleta , Dicroísmo Circular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA