RESUMO
Eukaryotic cells possess multiple mechanisms of self-destruction, including pyroptosis and necroptosis. Pyroptosis is a type of programmed cell death characterized by cellular rupture and linked to inflammation. SnoRNA, a small non-coding RNA in the nucleolus, can dysregulate specific RNAs through 2'-O-methylation, contributing to tumorigenesis. Our StarBase and qRT-PCR analysis revealed SNORD99 upregulation in endometrial cancer (EC) tissue compared to normal tissue, suggesting its role in pathogenesis. SNORD99 overexpression enhanced migration and proliferation of EC cells, while ASO-mediated suppression reduced malignant cell spread and division. RNA-seq and base-comparing analysis identified GSDMD's differential expression upon SNORD99 overexpression, forming the SNORD99-FBL RNP complex. RTL-P experiments showed SNORD99 increased GSDMD's 2'-O-methylation. SNORD99 reduced GSDMD, caspase-1, and NLRP3 protein levels, implicating its role in pyroptosis. Optical and electron microscopy confirmed enhanced pyroptosis features. In summary, SNORD99 modifies GSDMD via 2'-O-methylation, suppressing pyroptosis and promoting EC progression. Developing pyroptosis-inducing drugs may offer new cancer treatment avenues.
Assuntos
Proliferação de Células , Neoplasias do Endométrio , Regulação Neoplásica da Expressão Gênica , Piroptose , Piroptose/genética , Humanos , Feminino , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/genética , Metilação , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Movimento Celular , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Animais , GasderminasRESUMO
Endometrial carcinoma is a common gynecological malignant tumor, small nucleolar RNAs (snoRNAs) are involved in cancer development. However, researches on the roles of snoRNAs in endometrial carcinoma are limited. The expression levels of snoRNAs in endometrial cancer tissues were analyzed using The Cancer Genome Atlas (TCGA) database. Antisense oligonucleotides (ASOs) and plasmids were used for transfection. Moreover, CCK-8, EdU, wound-healing assay, transwell, cell apoptosis, western blotting, and xenograft model were employed to examine the biological functions of related molecules. real-time reverse transcription polymerase chain reaction and western blotting were performed to detect messenger RNA (mRNA) and protein levels. Including bioinformatics, fluorescence in situ hybridization, RNA pulldown, actinomycin D and RTL-P assays were also carried out to explore the molecular mechanism. Analysis of data from TCGA showed that the expression level of small nucleolar RNA, C/D box 60 (SNORD60) in endometrial cancer tissues is observably higher than that in normal endometrial tissues. Further research suggested that SNORD60 played a carcinogenic role both in vitro and in vivo, and significantly upregulated the expression of PIK3CA. However, the carcinogenic effects can be reversed by knocking down fibrillarin (FBL) or PIK3CA. SNORD60 forms complexes by binding with 2'-O-methyltransferase fibrillarin, thus catalyzes the 2'-O-methylation (Nm) modification of PIK3CA mRNA and modulates the PI3K/AKT/mTOR signaling pathway, so as to promote the development of endometrial cancer. In short, SNORD60 might become a new biomarker for the therapy of endometrial cancer in the future and provide new strategies for diagnosis and treatment.
Assuntos
Neoplasias do Endométrio , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Endométrio/patologia , Carcinogênese/genética , Carcinogênese/patologia , RNA Mensageiro/genética , Transformação Celular Neoplásica , Classe I de Fosfatidilinositol 3-Quinases/genética , Proliferação de Células/genéticaRESUMO
The present study demonstrated for the first time that SNORA70E, which belongs to box H/ACA small nucleolar noncoding RNAs (snoRNAs) who could bind and induce pseudouridylation of RNAs, was significantly elevated in ovarian cancer tissues and was an unfavourable prognostic factor of ovarian cancer. The over-expression of SNORA70E showed increased cell proliferation, invasion and migration in vitro and induced tumour growth in vivo. Further research found that SNORA70E regulates RAS-Related Protein 1B (RAP1B) mRNA through pseudouracil modification by combing with the pyrimidine synthase Dyskerin Pseudouridine Synthase 1 (DKC1) and increase RAP1B protein level. What's more, the silencing of DKC1/RAP1B in SNORA70E overexpression cells both inhibited cell proliferation, migration and invasion through reducing ß-catenin, PI3K, AKT1, mTOR, and MMP9 protein levels. Besides, RNA-Seq results revealed that SNORA70E regulates the alternative splicing of PARP-1 binding protein (PARPBP), leading to the 4th exon-skipping in PARPBP-88, forming a new transcript PARPBP-15, which promoted cell invasion, migration and proliferation. Finally, ASO-mediated silencing of SNORA70E could inhibit ovarian cancer cell proliferation, invasion, migration ability in vitro and inhibit tumorigenicity in vivo. In conclusion, SNORA70E promotes the occurrence and development of ovarian cancer through pseudouridylation modification of RAP1B and alternative splicing of PARPBP. Our results demonstrated that SNORA70E may be a new diagnostic and therapeutic target for ovarian cancer.
Assuntos
Proteínas de Ligação a DNA , Neoplasias Ovarianas , RNA Nucleolar Pequeno , Proteínas rap de Ligação ao GTP , Processamento Alternativo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Metaloproteinase 9 da Matriz/genética , Proteínas Nucleares/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/genética , Inibidores de Poli(ADP-Ribose) Polimerases , RNA Mensageiro , RNA Nucleolar Pequeno/genética , Serina-Treonina Quinases TOR/genética , beta Catenina/genética , Proteínas rap de Ligação ao GTP/genéticaRESUMO
In modern times, a notable trend toward delayed childbearing has been observed in most developed countries. As a result, sperm aging and quality loss, as well as premature ovarian failure (POF), have emerged as major causes of infertility. The pathogenesis of sperm aging and POF is complex and has not been clearly elucidated. However, evidence from some studies has linked germ cell aging to epigenetic modifications. Epigenetics refers to the heritable changes in gene expression that occur in the absence of any alterations to the gene's nucleotide sequence. This paper systematically reviewed and analyzed the relevant literature to describe the relationship of DNA methylation, non-coding RNA regulation, histone modifications, chromatin remodeling, and RNA modifications with sperm aging and POF. In addition, we analyzed how sperm aging and POF can be mitigated via epigenetic interventions. This review could provide new therapeutic insights and guide strategies for improving sperm quality and ovarian function.
RESUMO
Nonprogrammed cell death (NPCD) and programmed cell death (PCD) are two types of cell death. Cell death is significantly linked to tumor development, medication resistance, cancer recurrence, and metastatic dissemination. Therefore, a comprehensive understanding of cell death is essential for the treatment of cancer. Pyroptosis is a kind of PCD distinct from autophagy and apoptosis in terms of the structure and function of cells. The defining features of pyroptosis include the release of an inflammatory cascade reaction and the expulsion of lysosomes, inflammatory mediators, and other cellular substances from within the cell. Additionally, it displays variations in osmotic pressure both within and outside the cell. Pyroptosis, as evidenced by a growing body of research, is critical for controlling the development of inflammatory diseases and cancer. In this paper, we reviewed the current level of knowledge on the mechanism of pyroptosis and inflammasomes and their connection to cancer and inflammatory diseases. This article presents a theoretical framework for investigating the potential of therapeutic targets in cancer and inflammatory diseases, overcoming medication resistance, establishing nanomedicines associated with pyroptosis, and developing risk prediction models in refractory cancer. Given the link between pyroptosis and the emergence of cancer and inflammatory diseases, pyroptosis-targeted treatments may be a cutting-edge treatment strategy.
RESUMO
Adenosine-to-inosine (A-to-I) editing, a key RNA modification widely found in eukaryotes, is catalyzed by adenosine deaminases acting on RNA (ADARs). Such RNA editing destabilizes endogenous dsRNAs, which are subsequently recognized by the sensors of innate immune and other proteins as autologous dsRNAs. This prevents the activation of innate immunity and type I interferon-mediated responses, thereby reducing the downstream cell death induced by the activation of the innate immune sensing system. ADARs-mediated editing can also occur in mRNAs and non-coding RNAs (ncRNAs) in different species. In mRNAs, A-to-I editing may lead to missense mutations and the selective splicing of coding regions. Meanwhile, in ncRNAs, A-to-I editing may affect targeting and disrupt ncRNAs maturation, leading to anomalous cell proliferation, invasion, and responses to immunotherapy. This review highlights the biological functions of A-to-I editing, its role in regulating innate immunity and cell death, and its potential molecular significance in tumorigenesis and cancer targeted therapy and immunotherapy.
Assuntos
Imunidade Inata , Neoplasias , Humanos , RNA de Cadeia Dupla , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Adenosina/metabolismoRESUMO
Corydalis impatiens (Pall.) Fisch. 1821. (Papaveraceae) is a Tibetan medical herb used to reduce pain, treat skin injuries, cure hepatitis, and benefit the circulatory system. In the current study, the chloroplast genome of C. impatiens was sequenced. This complete genome is a circular 197,317 bp sequence consisting of a small single-copy (SSC, 3105 bp) region, a large single-copy (LSC, 89,790 bp) region, and a pair of inverted repeats (IRs, 52,211 bp). This chloroplast genome encodes a total of 127 functional genes, including 81 protein-coding, 38 transfer RNA, and eight ribosomal RNA genes. Furthermore, this chloroplast genome contains six pseudogenes, including a pair of ndhB a pair of ndhD, one ndhC, and one ndhK. The phylogenetic relationship within the genus Corydalis was inferred with the maximum-likelihood method, and the result showed that C. impatiens was most closely related to C. conspersa.
RESUMO
Wnt/ß-catenin pathway is associated with the progression of various cancers such as gastric cancer, colorectal cancer, and endometrial cancer. Using the Kaplan-Meier Plotter database, we found that WNT6 was associated with progression-free survival (PFS) outcomes. Immunohistochemical analysis of ovarian cancer samples and normal ovaries showed that the expression of WNT6 protein was significantly increased in ovarian cancer samples. Further, we explored the possible role of WNT6 in the occurrence and development of ovarian cancer. Our results showed that the mRNA and protein expression of WNT6 were significantly higher in CAOV3 and OVCAR3 cells compared with other ovarian cancer cell lines and normal ovarian cell line IOSE-80 as well. The transformation of CAOV3 and OVCAR3 cells with short interfering WNT6 (siWNT6) significantly inhibited their proliferation and lamellipodia formation, causing cell cycle arrest and promoting cell apoptosis. Western blot experiments confirmed that the down-regulation of WNT6 inhibited the expression of ß-catenin and Notch1. These results suggest that WNT6 plays an important role in the occurrence and development of ovarian cancer.
Assuntos
Neoplasias Ovarianas , Via de Sinalização Wnt , Apoptose , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/metabolismo , RNA Mensageiro , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismoRESUMO
The small nucleolar RNA (snoRNA) is a type of small non-coding RNA widely distributed in the nucleoli of eukaryotic cells, promoting cancer development. The aim of this study was to assess box C/D snoRNA 89 (SNORD89) dysregulations in endometrial cancer. According to the TCGA database as well as the International Federation of Gynecology and Obstetrics (FIGO), higher SNORD89 expression is found in endometrial cancer tissues. In addition, the SNORD89 expression level was higher in endometrial carcinoma with lymph node metastasis than in endometrial carcinoma without lymph node metastasis. By interacting with the conservative chaperone protein methylase fibrillarin (Fbl), SNORD89 inhibits the translation process of the Bim gene, leading to a decrease in Bim protein. Cancer-promoting effect of SNORD89 can be reversed by Fbl knockdown or Bim overexpressing. What's more, ASO-mediated silencing of SNORD89 could inhibit endometrial cancer cell proliferation and migration ability. Taken together, SNORD89 can modify Bim through 2'-O-methylation and affect downstream signaling pathways to promote endometrial cancer occurrence and development. The role of methylation modification in the prevention and treatment of endometrial cancer provides a new understanding and SNORD89 may be a new diagnostic and therapeutic target for endometrial cancer.