Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 531(2): 180-186, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32788069

RESUMO

Senescence is closely related to the occurrence of retinal degeneration. Recent studies have shown that bone marrow mesenchymal stem cells (BMMSCs) have significant therapeutic effects on retinal degeneration, While BMMSCs suffer from functional decline in bone aging. Whether senescence affects BMMSCs therapy on retinal degeneration remains unknown. Here, we applied the previously established bone progeria animal model, the senescence-accelerated mice-prone 6 (SAMP6) strain, and surprisingly discovered that SAMP6 mice demonstrated retinal degeneration at 6 months old. Furthermore, BMMSCs derived from SAMP6 mice failed to prevent MNU-induced retinal degeneration in vivo. As expected, BMMSCs from SAMP6 mice exhibited impairment in the differentiation capacities, compared to those from the age-matched senescence-accelerated mice-resistant 1 (SAMR1) strain. Moreover, BMMSCs from SAMR1 mice counteracted MNU-induced retinal degeneration, with increased expression of the retina survival hallmark, N-myc downstream regulated gene 2 (NDRG2). Taken together, these findings reveal that bone progeria diminished the therapeutic effects of BMMSC on retinal degeneration.


Assuntos
Osso e Ossos/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Progéria/patologia , Degeneração Retiniana/terapia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular , Camundongos , Retina/patologia , Degeneração Retiniana/patologia
2.
J Neuroinflammation ; 15(1): 131, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720230

RESUMO

BACKGROUND: Multiple risk factors contribute to the progression of Parkinson's disease, including oxidative stress and neuroinflammation. Epidemiological studies have revealed a link between higher urate level and a lower risk of developing PD. However, the mechanistic basis for this association remains unclear. Urate protects dopaminergic neurons from cell death induced by oxidative stress. Here, we investigated a novel role of urate in microglia activation in a lipopolysaccharide (LPS)-induced PD model. METHODS: We utilized Griess, ELISA, real-time PCR, Western blot, immunohistochemistry, and immunofluorescence to detect the neuroinflammation. For Griess, ELISA, Western blot, and immunofluorescence assay, cells were seeded in 6-well plates pre-coated with poly-L-lysine (PLL) and incubated for 24 h with the indicated drugs. For real-time PCR assay, cells were seeded in 6-well plates pre-coated with PLL and incubated for 6 h with the indicated drugs. For animal experiments, rats were injected with urate or its vehicle twice daily for five consecutive days before and after stereotaxic surgery. Rats were killed and brain tissues were harvested after 4 weeks of LPS injection. RESULTS: In cultured BV2 cells and rat primary microglia, urate suppressed proinflammatory cytokine production and inducible cyclooxygenase 2 and nitric oxide synthase expression to protect dopaminergic neurons from the toxic effects of activated microglia. The neuroprotective effects of urate may also be associated with the stimulation of anti-inflammatory factors interleukin 10 and transforming growth factor ß1. Intracellular urate level was increased in a dose-dependent manner upon co-treatment with urate and LPS as compared with LPS alone, an effect that was abrogated by pretreatment with probenecid (PBN), an inhibitor of both glucose transporter 9 and urate transporter 1 (URAT1). PBN also abolished the anti-inflammatory effect of urate. Consistent with these in vitro observations, the number of tyrosine hydroxylase-positive neurons was decreased and the loss of motor coordination was reversed by urate administration in an LPS-induced rat model of PD. Additionally, increased plasma urate level abolished the reduction of URAT1 expression, the increase in the expression of interleukin-1ß, and the number of ionized calcium-binding adaptor molecule 1-positive microglia along with changes in their morphology. CONCLUSIONS: Urate protects neurons against cytotoxicity induced by microglia activation via modulating urate transporter-mediated intracellular urate level.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/prevenção & controle , Ácido Úrico/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Microglia/patologia , Transtornos Parkinsonianos/patologia , Ratos , Ratos Sprague-Dawley , Ácido Úrico/uso terapêutico
3.
Pharmacol Res ; 121: 145-157, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28455267

RESUMO

Numerous epidemiological studies suggested that there is a variable cancer risk in patients with Parkinson's disease (PD). However, the underlying mechanisms remain unclear. In the present study, the role of metabotropic glutamate receptor 5 (mGluR5) has been investigated in 6-hydroxydopamine (6-OHDA)-induced PD combined with liver cancer both in vitro and in vivo. We found that PD cellular model from 6-OHDA-lesioned MN9D cells suppressed the growth, migration, and invasion of Hepa1-6 cells via down-regulation of mGluR5-mediated ERK and Akt pathway. The application of 2-methyl-6-(phenylethyl)-pyridine and knockdown of mGluR5 further decreased the effect on Hepa-1-6 cells when co-cultured with conditioned media. The effect was increased by (S)-3,5-dihydroxyphenylglycine and overexpression of mGluR5. Moreover, more release of glutamate from 6-OHDA-lesioned MN9D cells suppressed mGluR5-mediated effect of Hepa1-6 cells. Application of riluzole eliminated the increased glutamate release induced by 6-OHDA in MN9D cells and aggravated the suppressive effect on Hepa-1-6 cells. In addition, the growth of implanted liver cancer was inhibited in 6-OHDA induced PD-like rats, and was associated with increased glutamate release in the serum and down-regulation of mGluR5 in tumor tissue. Collectively, these results indicate that selective antagonism of glutamate and mGluR5 has a potentially beneficial effect in both liver cancer and PD, and thus may provide more understanding for the clinical investigation and further an additional therapeutic target for these two diseases.


Assuntos
Ácido Glutâmico/metabolismo , Neoplasias Hepáticas/metabolismo , Oxidopamina , Doença de Parkinson Secundária/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Doença de Parkinson Secundária/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
4.
Cell Death Differ ; 28(3): 1041-1061, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33082517

RESUMO

Photoreceptor apoptosis is recognized as one key pathogenesis of retinal degeneration, the counteraction of which represents a promising approach to safeguard visual function. Recently, mesenchymal stem cell transplantation (MSCT) has demonstrated immense potential to treat ocular disorders, in which extracellular vesicles (EVs), particularly exosomes, have emerged as effective ophthalmological therapeutics. However, whether and how MSCT protects photoreceptors against apoptotic injuries remains largely unknown. Here, we discovered that intravitreal MSCT counteracted photoreceptor apoptosis and alleviated retinal morphological and functional degeneration in a mouse model of photoreceptor loss induced by N-methyl-N-nitrosourea (MNU). Interestingly, effects of MSCT were inhibited after blockade of exosomal generation by GW4869 preconditioning. Furthermore, MSC-derived exosomal transplantation (EXOT) effectively suppressed MNU-provoked photoreceptor injury. Notably, therapeutic efficacy of MSCT and EXOT on MNU-induced retinal degeneration was long-lasting as photoreceptor preservance and retinal maintenance were detected even after 1-2 months post to injection for only once. More importantly, using a natural occurring retinal degeneration model caused by a nonsense mutation of Phosphodiesterase 6b gene (Pde6bmut), we confirmed that MSCT and EXOT prevented photoreceptor loss and protected long-term retinal function. In deciphering therapeutic mechanisms regarding potential exosome-mediated communications, we identified that miR-21 critically maintained photoreceptor viability against MNU injury by targeting programmed cell death 4 (Pdcd4) and was transferred from MSC-derived exosomes in vivo for functional regulation. Moreover, miR-21 deficiency aggravated MNU-driven retinal injury and was restrained by EXOT. Further experiments revealed that miR-21 mediated therapeutic effects of EXOT on MNU-induced photoreceptor apoptosis and retinal dysfunction. These findings uncovered the efficacy and mechanism of MSCT-based photoreceptor protection, indicating exosomal miR-21 as a therapeutic for retinal degeneration.


Assuntos
Transplante de Células-Tronco Mesenquimais , MicroRNAs/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Animais , Apoptose , Modelos Animais de Doenças , Feminino , Masculino , Metilnitrosoureia/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Retina/metabolismo , Degeneração Retiniana/induzido quimicamente
5.
Stem Cell Reports ; 15(1): 110-124, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668219

RESUMO

Mesenchymal stem/stromal cells (MSCs) reside in the perivascular niche and modulate tissue/organ homeostasis; however, little is known about whether and how their localization and function are linked. Particularly, whether specific MSC subsets couple with and regulate specialized vessel subtypes is unclear. Here, we show that Gli1+ cells, which are a subpopulation of MSCs couple with and regulate a specialized form of vasculature. The specific capillaries, i.e., CD31hiEMCNhi type H vessels, are the preferable vascular subtype which Gli1+ cells are adjacent to in bone. Gli1+ cells are further identified to be phenotypically coupled with type H endothelium during bone growth and defect healing. Importantly, Gli1+ cell ablation inhibits type H vessel formation associated with suppressed bone generation and regeneration. Mechanistically, Gli1+ cells initiate angiogenesis through Gli and HIF-1α signaling. These findings suggest a morphological and functional framework of Gli1+ cells modulating coupled type H vasculature for tissue homeostasis and regenerative repair.


Assuntos
Capilares/citologia , Neovascularização Fisiológica , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Desenvolvimento Ósseo , Osso e Ossos/irrigação sanguínea , Osso e Ossos/patologia , Endotélio/irrigação sanguínea , Deleção de Genes , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA