Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 27(19): 26728-26737, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674548

RESUMO

Modal inspection of optical fibers is important for multimode application but it is challenging to collect in-situ information of propagating modes for evaluation and manipulation. Here we demonstrate direct observation of multimode interference in Er3+/Yb3+ co-doped micro/nanofibers. Luminescent interference patterns are visualized by visible up-conversion of Er3+ ions and are used for establishing the existence of higher order modes co-propagating with fundamental modes. We use fast Fourier transform to analyze the patterns in detail and obtain excellent agreement between experiment and calculation on beat lengths of the interference. Effective index differences among higher order modes and a fundamental mode of a microfiber are also experimentally investigated with the assistance of interference patterns, revealing the characteristic of modal dispersions.

2.
Nano Lett ; 16(8): 4807-10, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27414182

RESUMO

On the basis of the transverse second harmonic generation (TSHG) in a highly nonlinear subwavelength-diameter CdTe nanowire, we demonstrate a single-nanowire optical correlator for femto-second pulse measurement with pulse energy down to femtojoule (fJ) level. Pulses to be measured were equally split and coupled into two ends of a suspending nanowire via tapered optical fibers. The couterpropagating pulses meet each other around the central area of the nanowire, and emit TSHG signal perpendicular to the axis of the nanowire. By transferring the spatial intensity profile of the transverse second harmonic (TSH) image into the time-domain temporal profile of the input pulses, we operate the nanowire as a miniaturized optical correlator. Benefitted from the high nonlinearity and the very small effective mode area of the waveguiding CdTe nanowire, the input energy of the single-nanowire correlator can go down to fJ-level (e.g., 2 fJ/pulse for 1064 nm 200 fs pulses). The miniature fJ-pulse correlator may find applications from low power on-chip optical communication, biophotonics to ultracompact laser spectroscopy.

3.
Light Sci Appl ; 9: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194956

RESUMO

By integrating a free-standing cadmium sulfide (CdS) nanowire onto a silicon nitride (SiN) photonic chip, we demonstrate a highly compact on-chip single-mode CdS nanowire laser. The mode selection is realized using a Mach-Zehnder interferometer (MZI) structure. When the pumping intensity exceeds the lasing threshold of 4.9 kW/cm2, on-chip single-mode lasing at ~518.9 nm is achieved with a linewidth of 0.1 nm and a side-mode suppression ratio of up to a factor of 20 (13 dB). The output of the nanowire laser is channelled into an on-chip SiN waveguide with high efficiency (up to 58%) by evanescent coupling, and the directional coupling ratio between the two output ports can be varied from 90 to 10% by predesigning the coupling length of the SiN waveguide. Our results open new opportunities for both nanowire photonic devices and on-chip light sources and may pave the way towards a new category of hybrid nanolasers for chip-integrated applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA