Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur Radiol ; 33(7): 4567-4579, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37099173

RESUMO

OBJECTIVES: Quantification of tau accumulation using positron emission tomography (PET) is critical for the diagnosis of Alzheimer's disease (AD). This study aimed to evaluate the feasibility of 18F-florzolotau quantification in patients with AD using a magnetic resonance imaging (MRI)-free tau PET template, since individual high-resolution MRI is costly and not always available in practice. METHODS: 18F-florzolotau PET and MRI scans were obtained in a discovery cohort including (1) patients within the AD continuum (n = 87), (2) cognitively impaired patients with non-AD (n = 32), and (3) cognitively unimpaired subjects (n = 26). The validation cohort comprised 24 patients with AD. Following MRI-dependent spatial normalization (standard approach) in randomly selected subjects (n = 40) to cover the entire spectrum of cognitive function, selected PET images were averaged to create the 18F-florzolotau-specific template. Standardized uptake value ratios (SUVRs) were calculated in five predefined regions of interest (ROIs). MRI-free and MRI-dependent methods were compared in terms of continuous and dichotomous agreement, diagnostic performances, and associations with specific cognitive domains. RESULTS: MRI-free SUVRs had a high continuous and dichotomous agreement with MRI-dependent measures for all ROIs (intraclass correlation coefficient ≥ 0.980; agreement ≥ 94.5%). Similar findings were observed for AD-related effect sizes, diagnostic performances with respect to categorization across the cognitive spectrum, and associations with cognitive domains. The robustness of the MRI-free approach was confirmed in the validation cohort. CONCLUSIONS: The use of an 18F-florzolotau-specific template is a valid alternative to MRI-dependent spatial normalization, improving the clinical generalizability of this second-generation tau tracer. KEY POINTS: • Regional 18F-florzolotau SUVRs reflecting tau accumulation in the living brains are reliable biomarkers for the diagnosis, differential diagnosis, and assessment of disease severity in patients with AD. • The 18F-florzolotau-specific template is a valid alternative to MRI-dependent spatial normalization, improving the clinical generalizability of this second-generation tau tracer.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Estudos de Viabilidade , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Proteínas tau/metabolismo
2.
Mov Disord ; 36(10): 2314-2323, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34089275

RESUMO

BACKGROUND: 18 F-APN-1607 is a novel tau PET tracer characterized by high binding affinity for 3- and 4-repeat tau deposits. Whether 18 F-APN-1607 PET imaging is clinically useful in PSP remains unclear. OBJECTIVES: The objective of this study was to investigate the clinical utility of 18 F-APN-1607 PET in the diagnosis, differential diagnosis, and assessment of disease severity in patients with PSP. METHODS: We enrolled 3 groups consisting of patients with PSP (n = 20), patients with α-synucleinopathies (MSA with predominant parkinsonism, n = 7; PD, n = 10), and age- and sex-matched healthy controls (n = 13). The binding patterns of 18 F-APN-1607 in PET/CT imaging were investigated. Regional standardized uptake ratios were compared across groups and examined in relation to their utility in the differential diagnosis of PSP versus α-synucleinopathies. Finally, the relationships between clinical severity scores and 18 F-APN-1607 uptake were investigated after adjustment for age, sex, and disease duration. RESULTS: Compared with healthy controls, patients with PSP showed increased 18 F-APN-1607 binding in several subcortical regions, including the striatum, putamen, globus pallidus, thalamus, subthalamic nucleus, midbrain, tegmentum, substantia nigra, pontine base, red nucleus, raphe nuclei, and locus coeruleus. We identified specific regions that were capable of distinguishing PSP from α-synucleinopathies. The severity of PSP was positively correlated with the amount of 18 F-APN-1607 uptake in the subthalamic nucleus, midbrain, substantia nigra, red nucleus, pontine base, and raphe nuclei. CONCLUSIONS: 18 F-APN-1607 PET imaging holds promise for the diagnosis, differential diagnosis, and assessment of disease severity in patients with PSP. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Núcleo Subtalâmico , Paralisia Supranuclear Progressiva , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Putamen , Paralisia Supranuclear Progressiva/diagnóstico por imagem
3.
Anesthesiology ; 131(4): 850-865, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343459

RESUMO

BACKGROUND: Loss of consciousness during anesthesia reduces local and global rate of cerebral glucose metabolism. Despite this, the influence of gradual anesthetic-induced changes on consciousness across the entire brain metabolic network has barely been studied. The purpose of the present study was to identify specific cerebral metabolic patterns characteristic of different consciousness/anesthesia states induced by intravenous anesthetic propofol. METHODS: At various times, 20 Sprague-Dawley adult rats were intravenously administered three different dosages of propofol to induce different anesthetic states: mild sedation (20 mg · kg · h), deep sedation (40 mg · kg · h), and deep anesthesia (80 mg · kg · h). Using [F]fluorodeoxyglucose positron emission tomography brain imaging, alterations in the spatial pattern of metabolic distribution and metabolic topography were investigated by applying voxel-based spatial covariance analysis and graph-theory analysis. RESULTS: Evident reductions were found in baseline metabolism along with altered metabolic spatial distribution during propofol-induced anesthesia. Moreover, graph-theory analysis revealed a disruption in global and local efficiency of the metabolic brain network characterized by decreases in metabolic connectivity and energy efficiency during propofol-induced deep anesthesia (mild sedation global efficiency/local efficiency = 0.6985/0.7190, deep sedation global efficiency/local efficiency = 0.7444/0.7875, deep anesthesia global efficiency/local efficiency = 0.4498/0.6481; mild sedation vs. deep sedation, global efficiency: P = 0.356, local efficiency: P = 0.079; mild sedation vs. deep anesthesia, global efficiency: P < 0.0001, local efficiency: P < 0.0001; deep sedation vs. deep anesthesia, global efficiency: P < 0.0001, local efficiency: P < 0.0001). A strong spatial correlation was also found between cerebral metabolism and metabolic connectivity strength, which decreased significantly with deepening anesthesia level (correlation coefficients: mild sedation, r = 0.55, deep sedation, r = 0.47; deep anesthesia, r = 0.23; P < 0.0001 between the sedation and deep anesthesia groups). CONCLUSIONS: The data revealed anesthesia-related alterations in spatial and topologic organization of metabolic brain network, as well as a close relationship between metabolic connectivity and cerebral metabolism during propofol anesthesia. These findings may provide novel insights into the metabolic mechanism of anesthetic-induced loss of consciousness.


Assuntos
Anestésicos Intravenosos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Propofol/farmacologia , Animais , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley
4.
Int J Neurosci ; 128(8): 736-745, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29251083

RESUMO

PURPOSE: Constraint-induced movement therapy (CIMT) can improve motor functions in stroke patients and ischemic rats. This study examined the effect of CIMT in ischemic rats using positron emission tomography (PET). METHODS: We used middle cerebral artery occlusion (MCAO) procedure to induce cerebral ischemia in rats. Male rats were divided into a negative control group (Normal, n = 4), a sham-operated group (Sham, n = 6), an ischemic group (Control, n = 6) and an ischemic CIMT-treated group (CIMT, n = 6). CIMT started at postoperative day 8 (d8) and lasted for 2 weeks. We utilized 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) micro PET/CT imaging to evaluate glucose metabolism in different brain regions at baseline, before, and after treatment, respectively. RESULTS: CIMT improved behavioral performance in the ischemic CIMT group. At the end of treatment, the CIMT group showed lower standardized uptake values (SUVs) in the ipsilateral cingulate, motor and somatosensory cortex, respectively; as well as the anterodorsal hippocampus compared to the Control group (1.80% ± 0.10% vs. 1.92% ± 0.08%, 1.32% ± 0.14% vs. 1.48% ± 0.09%, 1.18% ± 0.14% vs. 1.42% ± 0.15%, 1.68% ± 0.09% vs. 1.79% ± 0.06%, P < 0.05). We also observed higher SUVs in the acbcore shell and cortex insular of the contralateral hemisphere compared to the Control group (2.07% group in the acbcore shell and cortex insular of contralateral P < 0.05). CONCLUSION: CIMT improved behavioral outcomes in cerebral ischemic rats and this effect can be attributed to increased glucose utilization in the contralateral hemisphere.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/reabilitação , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Restrição Física/métodos , Animais , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Fluordesoxiglucose F18 , Glucose/metabolismo , Infarto da Artéria Cerebral Média , Masculino , Desempenho Psicomotor , Ratos , Ratos Sprague-Dawley , Caminhada
5.
Hum Brain Mapp ; 36(10): 3867-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26147065

RESUMO

OBJECTIVES: Disorders of consciousness (DoC)-that is, unresponsive wakefulness syndrome/vegetative state and minimally conscious state-are debilitating conditions for which no reliable markers of consciousness recovery have yet been identified. Evidence points to the GABAergic system being altered in DoC, making it a potential target as such a marker. EXPERIMENTAL DESIGN: In our preliminary study, we used [(11) C]Flumazenil positron emission tomography to establish global GABAA receptor binding potential values and the local-to-global (LTG) ratio of these for specific regions. These values were then compared between DoC patients and healthy controls. In addition, they were correlated with behavioral improvements for the patients between the time of scanning and 3 months later. Functional magnetic resonance imaging resting-state functional connectivity was also calculated and the same comparisons made. PRINCIPAL OBSERVATIONS: lobal GABAA receptor binding was reduced in DoC, as was the LTG ratio in specifically the supragenual anterior cingulate. Both of these measures correlated with behavioral improvement after 3 months. In contrast to these measures of GABAA receptor binding, functional connectivity did not correlate with behavioral improvement. CONCLUSIONS: Our preliminary findings point toward GABAA receptor binding being a marker of consciousness recovery in DoC.


Assuntos
Transtornos da Consciência/diagnóstico por imagem , Transtornos da Consciência/genética , Receptores de GABA-A/deficiência , Adulto , Comportamento , Lesões Encefálicas/complicações , Transtornos da Consciência/patologia , Feminino , Flumazenil , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estado Vegetativo Persistente/diagnóstico por imagem , Estado Vegetativo Persistente/patologia , Estado Vegetativo Persistente/psicologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores de GABA-A/metabolismo , Recuperação de Função Fisiológica , Adulto Jovem
6.
NPJ Digit Med ; 7(1): 17, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253738

RESUMO

Artificial intelligence (AI)-assisted PET imaging is emerging as a promising tool for the diagnosis of Parkinson's disease (PD). We aim to systematically review the diagnostic accuracy of AI-assisted PET in detecting PD. The Ovid MEDLINE, Ovid Embase, Web of Science, and IEEE Xplore databases were systematically searched for related studies that developed an AI algorithm in PET imaging for diagnostic performance from PD and were published by August 17, 2023. Binary diagnostic accuracy data were extracted for meta-analysis to derive outcomes of interest: area under the curve (AUC). 23 eligible studies provided sufficient data to construct contingency tables that allowed the calculation of diagnostic accuracy. Specifically, 11 studies were identified that distinguished PD from normal control, with a pooled AUC of 0.96 (95% CI: 0.94-0.97) for presynaptic dopamine (DA) and 0.90 (95% CI: 0.87-0.93) for glucose metabolism (18F-FDG). 13 studies were identified that distinguished PD from the atypical parkinsonism (AP), with a pooled AUC of 0.93 (95% CI: 0.91 - 0.95) for presynaptic DA, 0.79 (95% CI: 0.75-0.82) for postsynaptic DA, and 0.97 (95% CI: 0.96-0.99) for 18F-FDG. Acceptable diagnostic performance of PD with AI algorithms-assisted PET imaging was highlighted across the subgroups. More rigorous reporting standards that take into account the unique challenges of AI research could improve future studies.

7.
Transl Neurodegener ; 12(1): 34, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37381042

RESUMO

BACKGROUND: Gaining more information about the reciprocal associations between different biomarkers within the ATN (Amyloid/Tau/Neurodegeneration) framework across the Alzheimer's disease (AD) spectrum is clinically relevant. We aimed to conduct a comprehensive head-to-head comparison of plasma and positron emission tomography (PET) ATN biomarkers in subjects with cognitive complaints. METHODS: A hospital-based cohort of subjects with cognitive complaints with a concurrent blood draw and ATN PET imaging (18F-florbetapir for A, 18F-Florzolotau for T, and 18F-fluorodeoxyglucose [18F-FDG] for N) was enrolled (n = 137). The ß-amyloid (Aß) status (positive versus negative) and the severity of cognitive impairment served as the main outcome measures for assessing biomarker performances. RESULTS: Plasma phosphorylated tau 181 (p-tau181) level was found to be associated with PET imaging of ATN biomarkers in the entire cohort. Plasma p-tau181 level and PET standardized uptake value ratios of AT biomarkers showed a similarly excellent diagnostic performance for distinguishing between Aß+ and Aß- subjects. An increased tau burden and glucose hypometabolism were significantly associated with the severity of cognitive impairment in Aß+ subjects. Additionally, glucose hypometabolism - along with elevated plasma neurofilament light chain level - was related to more severe cognitive impairment in Aß- subjects. CONCLUSION: Plasma p-tau181, as well as 18F-florbetapir and 18F-Florzolotau PET imaging can be considered as interchangeable biomarkers in the assessment of Aß status in symptomatic stages of AD. 18F-Florzolotau and 18F-FDG PET imaging could serve as biomarkers for the severity of cognitive impairment. Our findings have implications for establishing a roadmap to identifying the most suitable ATN biomarkers for clinical use.


Assuntos
Doença de Alzheimer , Fluordesoxiglucose F18 , Humanos , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/diagnóstico por imagem , Glucose , Proteínas tau , Cognição
8.
Clin Nucl Med ; 47(1): 90-92, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34874353

RESUMO

ABSTRACT: Pineal yolk sac tumors (YSTs) are a rare type of extragonadal YST. They make up a small fraction of all intracranial germ cell tumors and an even small fraction of pineal masses overall. This study reported a case of pineal YST with α-fetoprotein production revealed by 18F-FDG and 68Ga-FAPI PET/MRI. In the PET images, 68Ga-FAPI showed a far better tumor-to-background ratio than 18F-FDG in the pineal YST because there is little 68Ga-FAPI uptake in the brain. This case indicates that 68Ga-FAPI PET/MRI may be a useful tool for evaluating intracranial YST and other types of tumors in central nervous system.


Assuntos
Tumor do Seio Endodérmico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tumor do Seio Endodérmico/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Quinolinas , alfa-Fetoproteínas
9.
Diabetes Res Clin Pract ; 186: 109806, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35240228

RESUMO

AIMS: We aimed to explore the evidence of brain microglia activation in diabetic neuropathic pain (DNP) and the effect and mechanism of glucagon-like peptide-1 receptor agonist (GLP-RA) on DNP via brain microglia. METHODS: Brain microglia activation was observed in DNP rats by positron emission tomography/computed tomography. The behavior of neuropathic pain was assessed in DNP rats after intracerebroventricular administration of GLP-1RA or microglial inhibitor minocycline. RNA sequencing was performed to explore the target of GLP-1RA on brain microglia. NOD-like receptor protein 3 (NLRP3) expression in brain microglia was evaluated in mentioned-above DNP rats, and the activation of NLRP3 inflammasome was analyzed in microglia treated with GLP-1RA. RESULTS: Microglia were activated in the cortex and thalamus of DNP rats. The thermal and mechanical allodynia were alleviated in DNP rats via intracerebroventricular administration of GLP-1RA or minocycline. And the activation of brain microglia was attenuated in DNP rats by intracerebroventricular administration of GLP-1RA. The expression of NLRP3 in brain microglia, which was found by RNA sequencing, was reduced in DNP rats by administration of GLP-1RA. Furthermore, GLP-1RA attenuated NLRP3 inflammasome activation in microglia triggered by LPS. CONCLUSION: GLP-1RA could alleviate DNP, possibly mediated by the suppression of brain microglia NLRP3 inflammasome activation.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Animais , Encéfalo/metabolismo , Diabetes Mellitus/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Microglia/metabolismo , Minociclina/metabolismo , Minociclina/farmacologia , Minociclina/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Ratos
10.
Brain Sci ; 12(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36291289

RESUMO

PURPOSE: 18F-Florzolotau is a novel second-generation tau radiotracer that shows higher binding affinity and selectivity and no off-target binding. The proportion loss of functional connectivity strength (PLFCS) is a new indicator for representing brain functional connectivity (FC) alteration. This study aims to estimate the relationship between the regional tau accumulation and brain FC abnormality in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients based on Florzolotau PET and fMRI. METHODS: 22 NC (normal control), 31 MCI and 42 AD patients who have already been scanned with 18F-Florzolotau PET were recruited in this study. (We calculated the PLFCS and standardized uptake value ratio (SUVR) of each node based on the Brainnetome atlas (BNA) template. The SUVR of 246 brain regions was calculated with the cerebellum as the reference region. Further functional connection strength (FCs), PLFCS and SUVR of each brain region were obtained in three groups for comparison.) For each patient, PLFCS and standardized uptake value ratio (SUVR) were calculated based on the Brainnetome atlas (BNA) template. These results, as well as functional connection strength (FCs), were then compared between different groups. Multiple permutation tests were used to determine the target nodes between NC and cognitive impairment (CI) groups (MCI and AD). The relationship between PLFCS and neuropsychological scores or cortical tau deposit was investigated via Pearson correlation analysis. RESULTS: Higher PLFCS and FCs in AD and MCI groups were found compared to the NC group. The PLFCS of 129 brain regions were found to be different between NC and CI groups, and 8 of them were correlated with tau SUVR, including superior parietal lobule (MCI: r = 0.4360, p = 0.0260, AD: r = -0.3663, p = 0.0280), middle frontal gyrus (AD: MFG_R_7_2: r = 0.4106, p = 0.0129; MFG_R_7_5: r = 0.4239, p = 0.0100), inferior frontal gyrus (AD: IFG_R_6_2: r = 0.3589, p = 0.0316), precentral gyrus (AD: PrG_R_6_6: r = 0.3493, p = 0.0368), insular gyrus (AD: INS_R_6_3: r = 0.3496, p = 0.0366) and lateral occipital cortex (AD: LOcC _L_4_3: r = -0.3433, p = 0.0404). Noteworthily, the opposing relationship was found in the superior parietal lobule in the MCI and AD groups. CONCLUSIONS: Brain functional connectivity abnormality is correlated with tau pathology in AD and MCI.

11.
Front Aging Neurosci ; 13: 624330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025386

RESUMO

Alzheimer's Disease (AD), the leading cause of senile dementia, is a progressive neurodegenerative disorder affecting millions of people worldwide and exerting tremendous socioeconomic burden on all societies. Although definitive diagnosis of AD is often made in the presence of clinical manifestations in late stages, it is now universally believed that AD is a continuum of disease commencing from the preclinical stage with typical neuropathological alterations appearing decades prior to its first symptom, to the prodromal stage with slight symptoms of amnesia (amnestic mild cognitive impairment, aMCI), and then to the terminal stage with extensive loss of basic cognitive functions, i.e., AD-dementia. Positron emission tomography (PET) radiotracers have been developed in a search to meet the increasing clinical need of early detection and treatment monitoring for AD, with reference to the pathophysiological targets in Alzheimer's brain. These include the pathological aggregations of misfolded proteins such as ß-amyloid (Aß) plagues and neurofibrillary tangles (NFTs), impaired neurotransmitter system, neuroinflammation, as well as deficient synaptic vesicles and glucose utilization. In this article we survey the various PET radiotracers available for AD imaging and discuss their clinical applications especially in terms of early detection and cognitive relevance.

12.
Front Neurosci ; 15: 598234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234637

RESUMO

BACKGROUND: Tau positron emission tomography (PET) imaging can reveal the pathophysiology and neurodegeneration that occurs in Alzheimer's disease (AD) in vivo. The standardized uptake value ratio (SUVR) is widely used for semi-quantification of tau deposition but is susceptible to disturbance from the reference region and the partial volume effect (PVE). To overcome this problem, we applied the parametric estimation of reference signal intensity (PERSI) method-which was previously evaluated for flortaucipir imaging-to two tau tracers, flortaucipir and [18F]-APN-1607. METHODS: Two cohorts underwent tau PET scanning. Flortaucipir PET imaging data for cohort I (65 healthy controls [HCs], 60 patients with mild cognitive impairment [MCI], and 12 AD patients) were from the AD Neuroimaging Initiative database. [18F]-APN-1607 ([18F]-PM-PBB3) PET imaging data were for Cohort II, which included 21 patients with a clinical diagnosis of amyloid PET-positive AD and 15 HCs recruited at Huashan Hospital. We used white matter (WM) postprocessed by PERSI (PERSI-WM) as the reference region and compared this with the traditional semi-quantification method that uses the whole cerebellum as the reference. SUVRs were calculated for regions of interest including the frontal, parietal, temporal, and occipital lobes; anterior and posterior cingulate; precuneus; and Braak I/II (entorhinal cortex and hippocampus). Receiver operating characteristic (ROC) curve analysis and effect sizes were used to compare the two methods in terms of ability to discriminate between different clinical groups. RESULTS: In both cohorts, regional SUVR determined using the PERSI-WM method was superior to using the cerebellum as reference region for measuring tau retention in AD patients (e.g., SUVR of the temporal lobe: flortaucipir, 1.08 ± 0.17 and [18F]-APN-1607, 1.57 ± 0.34); and estimates of the effect size and areas under the ROC curve (AUC) indicated that it also increased between-group differences (e.g., AUC of the temporal lobe for HC vs AD: flortaucipir, 0.893 and [18F]-APN-1607: 0.949). CONCLUSION: The PERSI-WM method significantly improves diagnostic discrimination compared to conventional approach of using the cerebellum as a reference region and can mitigate the PVE; it can thus enhance the efficacy of semi-quantification of multiple tau tracers in PET scanning, making it suitable for large-scale clinical application.

13.
Ther Adv Neurol Disord ; 14: 1756286421995635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717212

RESUMO

AIM: Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a subgroup of treatable autoimmune encephalitis, characterized by rapid development of psychosis, cognitive impairments and seizures. Etiologically, anti-NMDAR encephalitis could be divided into three subgroups, which are paraneoplastic (especially associated with ovarian teratoma), viral encephalitis-related and cryptogenic. Each type is different in clinical course, treatment strategies and prognosis. In this study, we aim to investigate whether anti-NMDAR encephalitis patients with different trigger factors exhibit distinct cerebral metabolic patterns detected by 18F-fluorodeoxyglucose positron emission tomography imaging. METHODS: 24 patients with anti-NMDAR encephalitis in acute phase from Huashan Hospital, Fudan University (Shanghai, China) were recruited in this study. Each patient was classified into one of etiological subgroups. Positron emission tomography images of individual patients were analyzed with both routine visual reading and computer-supported reading by comparison with those of the same 10 healthy controls using a voxel-wise statistical parametric mapping analysis. RESULTS: Patients in both the cryptogenic (13 patients) and paraneoplastic (five patients) subgroups showed hypermetabolism in the frontal-temporal lobes and basal ganglia, covarying with hypometabolism in the occipital regions. Notably, the abnormal metabolism was usually asymmetric in the cryptogenic subgroup, but relatively symmetric in the paraneoplastic subgroup. Moreover, the other six patients secondary to viral encephalitis presented with significant hypometabolism in the bilateral occipital regions, as well as in the unilateral temporal lobes and part of basal ganglia (also is virus infection side), but hypermetabolism in the contralateral temporal areas. CONCLUSION: This study revealed that patients with anti-NMDAR encephalitis triggered by different factors presented distinct cerebral metabolic patterns. Awareness of these patterns may help to better understand the varying occurrence and development of anti-NMDAR encephalitis in each subgroup, and could offer valuable information to the early diagnosis, treatment and prognosis of this disorder. TRIAL REGISTRATION NUMBER: ChiCTR2000029115 (Chinese clinical trial registry site, http://www.chictr.org).

14.
Neuroscience ; 478: 39-48, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687794

RESUMO

Drug-resistant temporal lobe epilepsy (TLE) is a potential candidate for surgery; however, nearly one-third subjects had a poor surgical prognosis. We studied the underlying neuromechanism related to the surgical prognosis using graph theory based on metabolic brain network. Sixty-four unilateral TLE subjects with preoperative 18F-fluorodeoxyglucose (FDG) PET scanning were retrospectively enrolled and divided into Ia (Engel class Ia, n = 32) and non-Ia (Engel class Ib-IV, n = 32) groups according to more than 3-year follow-up after unilateral anterior temporal lobectomy (ATL). The metabolic brain network was constructed and the changed metabolic connectivity of Ia and non-Ia was detected compared with 15 matched healthy controls (HCs). Further, the network properties, including small-worldness and global efficiency, were calculated and hub nodes were also identified for the 3 groups respectively. Non-Ia group exhibited increased connectivity between contralateral fusiform gyrus and contralateral lingual gyrus; while Ia showed decreased connectivity mainly among bilateral frontal, temporal and parietal cortex. Graph theoretical analysis revealed that non-Ia group showed increased small-worldness (35%

Assuntos
Epilepsia do Lobo Temporal , Fluordesoxiglucose F18 , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Humanos , Imageamento por Ressonância Magnética , Modelos Teóricos , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos , Resultado do Tratamento
15.
Indian J Pathol Microbiol ; 63(2): 262-266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317528

RESUMO

Recurrent mutations in H3F3A that encodes the histone 3 variant H3.3, lead to amino acid substitutions including K27M and G34R/V-which are observed in high-grade gliomas (HGGs) of children and young adults. Previous studies have focused on gliomas with K27M mutation, whereas gliomas with G34R/V mutation have received little attention. Herein, we report three rare cases of glioblastoma (GBM) with H3.3 G34 mutation arising from a cerebral hemisphere in two children and one young adult. All three cases showed microscopic characteristics of central nervous system primitive neuroectodermal tumor (CNS-PNET, called CNS embryonal tumors in WHO 2016 Revised 4th Edition) and presented H3.3 G34 mutation. H3.3 G34-mutant brain tumors were formerly a group of histopathologically distinct neoplasms, involved in GBM, CNS-PNET, and astroblastoma. However, recent studies have demonstrated that different CNS tumors with H3.3 G34 mutation display coherent epigenetic signatures, implying a single biological origin. Correspondingly, our three cases showed high consistency in tumor location, histological morphology, and molecular phenotype. Their immunophenotypes are similar to astrocytoma, with ATRX loss and TP53 mutation. Therefore it suggests that these H3.3 G34-mutant brain tumors may be a rare entity of HGG.


Assuntos
Cérebro/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Histonas/genética , Mutação , Doenças Raras/diagnóstico por imagem , Adolescente , Adulto , Fatores Etários , Cérebro/diagnóstico por imagem , Criança , Feminino , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Tumores Neuroectodérmicos Primitivos/diagnóstico
16.
Front Neurosci ; 14: 810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132817

RESUMO

Background: In the pathogenesis of Alzheimer's disease (AD), microglia play an increasingly important role. Molecular imaging of neuroinflammatory targeting microglia activation and the high expression of 18-kDa translocator protein (TSPO) has become a hot topic of research in recent years. Dynamic monitoring neuroinflammation is crucial for discovering the best time point of anti-inflammatory therapy. Motivated by this, Positron emission tomography (PET) imaging in an APP/PS1 mouse model of AD, using 18F-labeled DPA-714 to monitor microglia activation and neuroinflammation, were performed in this paper. Methods: We prepared [18F]DPA714 and tested the biological characteristics of the molecular probe in normal mice. To obtain a higher radiochemical yield, we improved the [18F]-fluorination conditions in the precursor dosage, reaction temperature, and synthesis time. We performed [18F]DPA714 PET scanning on APP/PS1 mice at 6-7, 9-10, 12-13, and 15-16 months of age, respectively. The same experiments were conducted in Wild-type (Wt) mice as a control. Referring to the [18F]DPA714 concentrated situation in the brain, we performed blocking experiments with PK11195 (1 mg/kg) in 12-13-months-old APP/PS1 mice to confirm the specificity of [18F]DPA714 for TSPO in the APP/PS1 mice. Reconstructed brain PET images, fused with the Magnetic Resonance Imaging (MRI) template atlas, and the volumes of interests (VOIs) of the hippocampus and cortex were determined. The distribution of [18F]DPA714 in the brain tissues of 15-16-months-old APP/PS1 and Wt mice were studied by immunofluorescence staining. Results: Through the reaction of 18F, with 2 mg precursor dissolved in 300 ul acetonitrile at 105°C for 10 min, we obtained the optimal radiochemical yield of 42.3 ± 5.1% (non-decay correction). Quantitative analysis of brain PET images showed that the [18F]DPA714 uptake in the cortex and hippocampus of 12-13-months-old APP/PS1 mice was higher than that of the control mice of the same age (cortex/muscle: 2.77 ± 0.13 vs. 1.93 ± 0.32, p = 0.0014; hippocampus/muscle: 3.33 ± 0.10 vs. 2.10 ± 0.35, p = 0.0008). The same significant difference was found between 15- and 16-months-old APP/PS1 mice (cortex/muscle: 2.64 ± 0.14 vs. 1.86 ± 0.52, p=0.0159; hippocampus/muscle: 2.89 ± 0.53 vs. 1.77 ± 0.48, p = 0.0050). Immunofluorescence staining showed that the activation of microglia and the level of TSPO expression in the cortex and hippocampus of APP/PS1 mice were significantly higher than Wt mice. Conclusion: [18F]DPA714, a molecular probe for targeting TSPO, showed great potential in monitoring microglia activation and neuroinflammation, which can be helpful in discovering the best time point for anti-inflammatory therapy in AD.

17.
World J Clin Cases ; 8(20): 4938-4945, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33195664

RESUMO

BACKGROUND: Forniceal deep brain stimulation (DBS) has been proposed as an alternative treatment for Alzheimer's disease (AD). Previous studies on mild to moderate AD patients demonstrated improvements in cognitive functions brought about by forniceal DBS. Here, we report our longitudinal findings in one severe AD patient for whom the activities of daily living (ADL) rather than cognitive function significantly improved after 3 mo of continuous stimulation. CASE SUMMARY: In 2011, a 62-year-old Chinese male with no previous history of brain injury or other neuropsychological diseases and no family history of dementia developed early symptoms of memory decline and cognitive impairment. Five years later, the symptoms had increased to the extent that they affected his daily living. He lost the ability to work as a businessman and to take care of himself. The patient was given a clinical diagnosis of probable AD and was prescribed donepezil and subsequently memantine, but no improvement in symptoms was observed. The patient then received DBS surgery. After 3 mo of continuous stimulation, the patient's ADL score decreased from 65 points to 47 points, indicating the quality of the patient's daily living improved distinctly. Other scores remained unchanged, suggesting no significant improvement in cognitive function. A follow-up positron emission tomography scan demonstrated perceivable increased glucose metabolism in the classical AD-related brain regions. CONCLUSION: Based on this case we hypothesize that forniceal DBS may improve ADL through elevating regional glucose metabolism in the brain.

18.
Front Neurosci ; 14: 604, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694971

RESUMO

Molecular imaging of tauopathies is complicated by the differing specificities and off-target binding properties of available radioligands for positron emission tomography (PET). [18F]-APN-1607 ([18F]-PM-PBB3) is a newly developed PET tracer with promising properties for tau imaging. We aimed to characterize the cerebral binding of [18F]-APN-1607 in Alzheimer's disease (AD) patients compared to normal control (NC) subjects. Therefore, we obtained static late frame PET recordings with [18F]-APN-1607 and [18F]-FDG in patients with a clinical diagnosis of AD group, along with an age-matched NC group ([18F]-APN-1607 only). Using statistical parametric mapping (SPM) and volume of interest (VOI) analyses of the reference region normalized standardized uptake value ratio maps, we then tested for group differences and relationships between both PET biomarkers, as well as their associations with clinical general cognition. In the AD group, [18F]-APN-1607 binding was elevated in widespread cortical regions (P < 0.001 for VOI analysis, familywise error-corrected P < 0.01 for SPM analysis). The regional uptake in AD patients correlated negatively with Mini-Mental State Examination score (frontal lobe: R = -0.632, P = 0.004; temporal lobe: R = -0.593, P = 0.008; parietal lobe: R = -0.552, P = 0.014; insula: R = -0.650, P = 0.003; cingulum: R = -0.665, P = 0.002) except occipital lobe (R = -0.417, P = 0.076). The hypometabolism to [18F]-FDG PET in AD patients also showed negative correlations with regional [18F]-APN-1607 binding in some signature areas of AD (temporal lobe: R = -0.530, P = 0.020; parietal lobe: R = -0.637, P = 0.003; occipital lobe: R = -0.567, P = 0.011). In conclusion, our results suggested that [18F]-APN-1607 PET sensitively detected tau deposition in AD and that individual tauopathy correlated with impaired cerebral glucose metabolism and cognitive function.

19.
Behav Brain Res ; 364: 348-355, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30797852

RESUMO

Tinnitus is relevant to neural hyperactivity in the central nervous system (CNS). Normal quantity and functioning of the γ-aminobutyric acid (GABA) receptor are crucial for maintaining the balance between excitation and inhibition in the brain. In this study, we applied a rat model of tinnitus via long-term salicylate administration. The combination of the gap pre-pulse inhibition of acoustic startle (GPIAS) and pre-pulse inhibition (PPI) tests were used to detect tinnitus-like behavior, and rats receiving 7 or 14 consecutive days of salicylate administration showed evidence of tinnitus. After positron emission tomography (PET) scan, we found that the metabolic activity was increased after salicylate treatment followed by enhanced GABAA receptor binding with cessation of salicylate administration in the auditory cortex (AC), medial prefrontal cortex (mPFC), hippocampus (HP), cingulate cortex (CiC) and insular (InC). The inferior colliculus (IC) showed an elevated metabolic activity with no change in the GABAA receptor binding. All the alterations returned to baseline several days after cessation of salicylate treatment despite a mismatch between the time-course of them. By contrast, we found alterations in neither the metabolic activity nor the GABAA receptor binding in the amygdala (AMY) and cerebellum (CRB). These findings indicate that enhanced neural activity in the auditory and limbic system may contribute to the development of tinnitus, while the hysteretic increase of GABAA receptor binding in specific areas of the CNS may be a compensation for hyperactivity, which may be involved in tinnitus relieving.


Assuntos
Receptores de GABA-A/metabolismo , Zumbido/metabolismo , Animais , Córtex Auditivo/metabolismo , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiologia , Masculino , Córtex Pré-Frontal/metabolismo , Inibição Pré-Pulso , Ratos , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Reflexo de Sobressalto/fisiologia , Salicilatos/efeitos adversos , Zumbido/induzido quimicamente , Zumbido/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
20.
Behav Brain Res ; 361: 32-38, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30583029

RESUMO

Olfactory ensheathing cells (OECs) has been widely studied in stroke. The present study was aimed at examining the role of wheel-running treatment (WR) on rat olfactory ensheathing cells (rOECs) functions. Thirty adult male Sprague Dawley rats were randomly divided into two groups: the middle cerebral artery occlusion (MCAO) group and WR + MCAO group. Motor behavior was assessed through the footfault test, and the results showed that WR training markedly improved the neurobehavioral outcome. The glucose metabolic status of the brain was assessed with the micro-PET. This training significantly enhanced the glucose uptake of olfactory bulb in the early stage of WR treatment. The function of rOECs mitochondrial was significantly enhanced after 10 days of treatment. Body weight of rats in both of the two groups decreased and then increased slowly following the days. But the growth trend of the WR + MCAO group was no significantly higher than that of the WR group. This training significantly enhanced the glucose uptake, improved the proliferation of rOECs and increased the expression level of cytochrome C (Cyt-c). The mechanism may be associated with the facilitation of mitochondrial function of rOECs cells. Including facilitation of mitochondrial fusion, fission, and accompanying increased quantities of mitochondria. Obtained results indicate that early WR treatment may exert enhanced function on rOECs in vivo and increased mitochondrial amounts, and improved the expression level of Cyt-c after ischemic stroke.


Assuntos
Condicionamento Físico Animal/fisiologia , Acidente Vascular Cerebral/terapia , Animais , Peso Corporal , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/terapia , Masculino , Mitocôndrias/metabolismo , Regeneração Nervosa/fisiologia , Bulbo Olfatório/fisiologia , Mucosa Olfatória , Tomografia por Emissão de Pósitrons/veterinária , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Olfato/fisiologia , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA