Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(38)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38917778

RESUMO

Ternary-phase CuWO4oxide with an electronic band gap of 2.2-2.4 eV is a potential candidate photoanode material for photoelectrochemical (PEC) water splitting. Herein, we present an efficient method to prepare CuWO4film photoanode by combining hydrothermal method and hybrid microwave annealing (HMA) process. In comparison with conventional thermal annealing (CTA), HMA can achieve CuWO4thin film within minutes by using SiC susceptor. When the CuWO4photoanode is prepared by HMA, its PEC water oxidation performance improves from 0.21 to 0.29 mA cm-2at 1.23 VRHEcomparing with the one prepared by CTA. The origin of the enhanced photocurrent was investigated by means of complementary physical characterizations and PEC methods. The results demonstrated that the obtained HMA processed CuWO4photoanode not only exhibited intrinsic porous nanostructures but also abundant surface hydroxyl groups, which facilitated sufficient mass transport and the charge transfer. Our results highlight the application of HMA for the fast fabrication of porous film photo-electrodes without using sacrificial template.

2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(4): 647-654, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34459163

RESUMO

In order to study the effect of light with different wavelengths on the motion behavior of carp robots, phototaxis experiment, anatomical experiment, light control experiment and speed measurement experiment were carried out in this study. Blue, green, yellow and red light with different wavelength were used to conduct phototaxis experiments on carp to observe their movement behavior. By dissecting the skull bones of the carp to determine the appropriate location to carry the light control device, we independently developed a light control carrying device which was suitable for any illumination intensity environment. The experiment of the light-controlled carp robots was carried out. The motion behavior of the carp robot was checked by using computer binocular stereo vision technology. The motion trajectory of the carp robot was tracked and obtained by applying kernel correlation filter (KCF) algorithm. The motion velocity of the carp robot at different wavelengths was calculated according to their motion trajectory. The results showed that carps' sensitivity to different light changed from strong to weak in the order of blue, red, yellow and green, so that using light with different wavelengths to control the speed of the carp robot has certain laws to follow. A new method to avoid brain damage in carp robots control can be provided in this study.


Assuntos
Carpas , Robótica , Algoritmos , Animais , Movimento (Física) , Fototaxia
3.
Phys Chem Chem Phys ; 21(35): 19288-19297, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31451821

RESUMO

This paper reports a facile, fast, and cost-effective method for the synthesis of three-dimensional (3D) porous AgNPs/Cu composites as SERS substrates for the super-sensitive and quantitative detection of food organic contaminations. Due to the 3D porous hotspot architecture and the strong plasmonic coupling between Ag and Cu, the porous AgNPs/Cu substrate achieves ultrasensitive detection of multiple analytes as low as 10-11 M (crystal violet, CV), 10-9 M (malachite green, MG), 10-11 M (acephate), and 10-9 M (thiram) even with a portable Raman device. Moreover, this 3D solid substrate has good signal uniformity (RSD < 11%) and superior stability (<14% signal loss), allowing for practical SERS detections. Importantly, by simply wiping the real sample surface using the substrate, it successfully detects CV and MG residues on crayfish, and the limit of detection (LOD) of CV and MG is determined to be 1.14 × 10-9 M and 0.94 × 10-7 M, respectively. Further, the substrate can also be applied to detect acephate on eggplant with a LOD of 1.41 × 10-9 M and thiram on an apple surface with a LOD of 1.04 × 10-7 M. Note that all these SERS detections on real samples have a broad dynamic concentration range and a good linear dependence. As a "proof of concept", multi-component detection on a real sample has also been demonstrated. This 3D solid substrate possesses excellent detection sensitivity, diversity, and accuracy, which allows rapid and reliable determination of toxic substances in foods.


Assuntos
Técnicas de Química Analítica/métodos , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Praguicidas/análise , Análise Espectral Raman , Animais , Técnicas de Química Analítica/economia , Cobre/química , Limite de Detecção , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Prata/química
4.
Angew Chem Int Ed Engl ; 57(50): 16452-16457, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30375752

RESUMO

The synthesis of discrete nanostructures with a strong, persistent, stable plasmonic circular dichroism (PCD) signal is challenging. We report a seed-mediated growth approach to obtain discrete Au nanorods with high and stable chiroptical responses (c-Au NRs) in the visible to near-IR region. The morphology of the c-Au NRs was governed by the concentration of l- or d-cysteine used. The amino acids encapsulated within the discrete gold nanostructure enhance their PCD signal, attributed to coupling of dipoles of chiral molecules with the near-field induced optical activity at the hot spots inside the c-Au NRs. The stability of the PCD signal and biocompatibility of c-Au NRs was improved by coating with silica or protein corona. Discrete c-Au NR@SiO2 with Janus or core-shell configurations retained their PCD signal even in organic solvents. A side-by-side assembly of c-Au NRs induced by l-glutathione led to further PCD signal enhancement, with anisotropic g factors as high as 0.048.


Assuntos
Materiais Biocompatíveis/química , Cisteína/química , Ouro/química , Nanotubos/química , Nanotubos/ultraestrutura , Dicroísmo Circular , Glutationa/química , Nanotecnologia , Dióxido de Silício/química , Estereoisomerismo
5.
ISA Trans ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38890017

RESUMO

This work explores the polynomial fuzzy stabilization for positive systems. The traditional quadratic Lyapunov function and basic stability analysis may not be favourable for stability investigation due to the absence of the positivity property and membership functions. Therefore, a fuzzy co-positive polynomial Lyapunov-Krasovskii (FCPL) function which considers the positivity is proposed firstly through an imperfect premise matching (IPM) approach. Secondly, the symbol transfer technique which takes into account fuzzy membership knowledge relaxes the stability conditions. The number of symbols is reduced by two constraints: (1) the last and next moments of the membership functions of the FCPL function; (2) membership functions of the fuzzy model and the controller. Finally, the polynomial fuzzy controller with symbols is obtained. Two examples are implemented to verify the proposed methods.

6.
Dalton Trans ; 51(25): 9720-9727, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35700450

RESUMO

Developing efficient ammonia synthesis technology under ambient conditions is of vital importance. In this work, an FeS2 coupled MoS2 heterostructure with ultrathin features was designed by a one-step hydrothermal process for the electrochemical nitrogen reduction reaction. Density functional theory calculations reveal that the electronic structure of MoS2 greatly changes with the introduction of FeS2. The modulated electronic structure of MoS2 not only exhibits enhanced conductivity but also facilitates the activation of N2 molecules due to its abundant electronic region. The optimized FeS2/MoS2 nanosheet heterostructure achieves a high NH3 yield rate of 2.59 µmol h-1 mg-1 and a FE of 4.63% at -0.3 V vs. RHE. Besides, the well-designed nanocomposite also shows excellent selectivity without N2H4 by-products and exhibits good stability after electrocatalysis for 48 hours.

7.
ACS Appl Mater Interfaces ; 12(1): 538-545, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31842539

RESUMO

The introduction of plasmonic additives is a promising approach to boost the efficiency of the dye-sensitized solar cell (DSSC) since they may improve the light harvesting of a solar cell. Herein, we design broadband and strong plasmonic absorption Au@Ag@SiO2 nanocuboids (GSS NCs) as nanophotonic inclusions to achieve plasmon-enhanced DSSCs. These multiple-resonance absorptions arising from GSS NCs can be readily adjusted by altering their structures to complementarily match the absorption spectra of the dyes, especially in weak absorption zones. By subtly regulating the position of nanophotonic inclusions in the photoanodes, not only the plasmonic near-field enhancement but also far-field light scattering could be adequately developed to promote the light harvest and thus the efficiency of DSSCs. The resulting solar cells yield an average efficiency of 10.34%, with a champion value of 10.58%. The electromagnetic simulations are consistent with the experimental observations, further corroborating the synergistic effect of plasmonic improvement in these DSSCs.

8.
ACS Sens ; 4(6): 1670-1681, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31117365

RESUMO

Semiconductor materials have become competitive candidates for surface-enhanced Raman scattering (SERS) substrates; however, their limited SERS sensitivity hinders the practical applications of semiconductors. Here, we develop a hybrid substrate by integrating anatase/rutile TiO2 heterostructure with dense plasmonic hotspots of Ag nanoparticle (AgNPs) for efficient photoinduced enhanced Raman spectroscopy (PIERS). The PIERS mechanism is systematically investigated by means of a portable Raman instrument. When ultraviolet (UV) light irradiates the substrate, the TiO2-Ag hybrid arrays produce remarkable charge-transfer enhancement, which can be ascribed to the highly efficient charge separation driven by heterojunction and transfer from TiO2 heterostructure to AgNPs. This platform allows for the rapid detection of multifold organic species, including malachite green (MG), crystal violet (CV), rhodamine 6G (R6G), thiram, and acephate, and as high as 27.8-fold enhancement over the normal SERS is achieved, representing the highest PIERS magnification up to the present time. The intensive PIERS enhancement makes it ultrasensitively detect analyte concentration of an order of magnitude lower than that of SERS method. The improved sensitivity and resolution can be readily realized by simple UV irradiation, which represents a major advantage of our PIERS methodology. Besides, the integration of uniform TiO2 heterostructure arrays with AgNPs generates superior signal reproducibility with relative standard deviation (RSD) value of less than 14%. In addition, the detected molecules on the substrate can be eliminated by photocatalytic degradation after PIERS measurements by using UV irradiation, which makes the substrate reusable for 15 cycles. The ultrahigh sensitivity, superior reproducibility, and excellent recyclability displayed by our platform may provide new opportunities in field detection analysis coupled with a portable Raman instrument.


Assuntos
Poluentes Ambientais/análise , Nanopartículas Metálicas/química , Semicondutores , Violeta Genciana/análise , Limite de Detecção , Nanopartículas Metálicas/efeitos da radiação , Nanotubos/química , Nanotubos/efeitos da radiação , Compostos Organotiofosforados/análise , Fosforamidas , Reprodutibilidade dos Testes , Rodaminas/análise , Corantes de Rosanilina/análise , Prata/química , Prata/efeitos da radiação , Análise Espectral Raman/métodos , Tiram/análise , Titânio/química , Titânio/efeitos da radiação , Raios Ultravioleta
9.
Light Sci Appl ; 6(5): e16217, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-30167245

RESUMO

Lanthanide-doped upconversion nanocrystals (UCNCs) have recently become an attractive nonlinear fluorescence material for use in bioimaging because of their tunable spectral characteristics and exceptional photostability. Plasmonic materials are often introduced into the vicinity of UCNCs to increase their emission intensity by means of enlarging the absorption cross-section and accelerating the radiative decay rate. Moreover, plasmonic nanostructures (e.g., gold nanorods, GNRs) can also influence the polarization state of the UC fluorescence-an effect that is of fundamental importance for fluorescence polarization-based imaging methods yet has not been discussed previously. To study this effect, we synthesized GNR@SiO2@CaF2:Yb3+,Er3+ hybrid core-shell-satellite nanostructures with precise control over the thickness of the SiO2 shell. We evaluated the shell thickness-dependent plasmonic enhancement of the emission intensity in ensemble and studied the plasmonic modulation of the emission polarization at the single-particle level. The hybrid plasmonic UC nanostructures with an optimal shell thickness exhibit an improved bioimaging performance compared with bare UCNCs, and we observed a polarized nature of the light at both UC emission bands, which stems from the relationship between the excitation polarization and GNR orientation. We used electrodynamic simulations combined with Förster resonance energy transfer theory to fully explain the observed effect. Our results provide extensive insights into how the coherent interaction between the emission dipoles of UCNCs and the plasmonic dipoles of the GNR determines the emission polarization state in various situations and thus open the way to the accurate control of the UC emission anisotropy for a wide range of bioimaging and biosensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA