Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 131: 160-172, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35641407

RESUMO

The Metazoan complexity arises from a primary building block, the epithelium, which comprises a layer of polarized cells that divide the organism into compartments. Most of these body compartments are organs formed by epithelial tubes that enclose an internal hollow space or lumen. Over the last decades, multiple studies have unmasked the paramount events required to form this lumen de novo. In epithelial cells, these events mainly involve recognizing external clues, establishing and maintaining apicobasal polarity, endo-lysosomal trafficking, and expanding the created lumen. Although canonical autophagy has been classically considered a catabolic process needed for cell survival, multiple studies have also emphasized its crucial role in epithelial polarity, morphogenesis and cellular homeostasis. Furthermore, non-canonical autophagy pathways have been recently discovered as atypical secretory routes. Both canonical and non-canonical pathways play essential roles in epithelial polarity and lumen formation. This review addresses how the molecular machinery for epithelial polarity and autophagy interplay in different processes and how autophagy functions influence lumenogenesis, emphasizing its role in the lumen formation key events.


Assuntos
Polaridade Celular , Células Epiteliais , Animais , Autofagia , Células Epiteliais/metabolismo , Epitélio , Morfogênese
2.
Cell Rep Methods ; 3(10): 100597, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37751739

RESUMO

Decades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues.


Assuntos
Cistos , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Epitélio , Células Epiteliais
3.
Dev Cell ; 56(18): 2542-2544, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34582770

RESUMO

Although contractile processes, from tissue invagination to cell intercalation, utilize diverse ratcheting mechanisms, little is known about how ratcheting becomes engaged at specific cell surfaces. In this issue of Developmental Cell, Maio et al. demonstrate that PI(3,4,5)P3 is a paramount regulator of the Sbf/RabGEF-Rab35 ratchet mechanism.


Assuntos
Fosfatidilinositóis , Membrana Celular , Constrição
4.
Curr Biol ; 31(4): 696-706.e9, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33275893

RESUMO

The actin cortex is involved in many biological processes and needs to be significantly remodeled during cell differentiation. Developing epithelial cells construct a dense apical actin cortex to carry out their barrier and exchange functions. The apical cortex assembles in response to three-dimensional (3D) extracellular cues, but the regulation of this process during epithelial morphogenesis remains unknown. Here, we describe the function of Smoothelin-like 2 (SMTNL2), a member of the smooth-muscle-related Smoothelin protein family, in apical cortex maturation. SMTNL2 is induced during development in multiple epithelial tissues and localizes to the apical and junctional actin cortex in intestinal and kidney epithelial cells. SMTNL2 deficiency leads to membrane herniations in the apical domain of epithelial cells, indicative of cortex abnormalities. We find that SMTNL2 binds to actin filaments and is required to slow down the turnover of apical actin. We also characterize the SMTNL2 proximal interactome and find that SMTNL2 executes its functions partly through inhibition of coronin-1B. Although coronin-1B-mediated actin dynamics are required for early morphogenesis, its sustained activity is detrimental for the mature apical shape. SMTNL2 binds to coronin-1B through its N-terminal coiled-coil region and negates its function to stabilize the apical cortex. In sum, our results unveil a mechanism for regulating actin dynamics during epithelial morphogenesis, providing critical insights on the developmental control of the cellular cortex.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/antagonistas & inibidores , Morfogênese , Fosfoproteínas/metabolismo , Animais , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio , Feminino , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Peixe-Zebra
5.
Biochim Biophys Acta Biomembr ; 1862(10): 183398, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561145

RESUMO

Epithelial tissues are made of highly specialized cells present in many organs and represent the first barrier of protection from the external environment. Essential for this critical role in protection is their capacity to polarize in the apicobasal axis. The integrity of the epithelium and its properties as a protective barrier is mostly regulated by dynamic intercellular junctions composed of multiprotein complexes. The functionality and dynamics of these junctions are tightly controlled by several signaling processes, including Rho GTPases. Here, we review the most recent data in the contribution of Rho GTPases and their functional regulators during the morphogenesis of epithelial tissues and to maintain the homeostasis in adults.


Assuntos
Polaridade Celular , Junções Intercelulares/metabolismo , Vertebrados/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA