Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Biol Chem ; 300(3): 105768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367664

RESUMO

Galactan polymer is a prominent component of the mycobacterial cell wall core. Its biogenesis starts at the cytoplasmic side of the plasma membrane by a build-up of the linker disaccharide [rhamnosyl (Rha) - N-acetyl-glucosaminyl (GlcNAc) phosphate] on the decaprenyl-phosphate carrier. This decaprenyl-P-P-GlcNAc-Rha intermediate is extended by two bifunctional galactosyl transferases, GlfT1 and GlfT2, and then it is translocated to the periplasmic space by an ABC transporter Wzm-Wzt. The cell wall core synthesis is finalized by the action of an array of arabinosyl transferases, mycolyl transferases, and ligases that catalyze an attachment of the arabinogalactan polymer to peptidoglycan through the linker region. Based on visualization of the GlfT2 enzyme fused with fluorescent tags it was proposed that galactan polymerization takes place in a specific compartment of the mycobacterial cell envelope, the intracellular membrane domain, representing pure plasma membrane free of cell wall components (previously denoted as the "PMf" domain), which localizes to the polar region of mycobacteria. In this work, we examined the activity of the galactan-producing cellular machine in the cell-wall containing cell envelope fraction and in the cell wall-free plasma membrane fraction prepared from Mycobacterium smegmatis by the enzyme assays using radioactively labeled substrate UDP-[14C]-galactose as a tracer. We found that despite a high abundance of GlfT2 in both of these fractions as confirmed by their thorough proteomic analyses, galactan is produced only in the reaction mixtures containing the cell wall components. Our findings open the discussion about the distribution of GlfT2 and the regulation of its activity in mycobacteria.


Assuntos
Galactanos , Mycobacterium , Galactanos/biossíntese , Polímeros/metabolismo , Proteômica , Transferases/metabolismo , Mycobacterium/metabolismo
2.
PLoS Genet ; 18(3): e1009815, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35255079

RESUMO

Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in ß-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.


Assuntos
Candida parapsilosis , Gentisatos , Candida parapsilosis/metabolismo , Carbono , Gentisatos/metabolismo , Hidroxibenzoatos/metabolismo , Filogenia , Proteoma/genética , Proteômica , Saccharomyces cerevisiae/metabolismo , Transcriptoma/genética
3.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879617

RESUMO

Mycobacterium tuberculosis, one of the deadliest pathogens in human history, is distinguished by a unique, multilayered cell wall, which offers the bacterium a high level of protection from the attacks of the host immune system. The primary structure of the cell wall core, composed of covalently linked peptidoglycan, branched heteropolysaccharide arabinogalactan, and mycolic acids, is well known, and numerous enzymes involved in the biosynthesis of its components are characterized. The cell wall biogenesis takes place at both cytoplasmic and periplasmic faces of the plasma membrane, and only recently some of the specific transport systems translocating the metabolic intermediates between these two compartments have been characterized [M. Jackson, C. M. Stevens, L. Zhang, H. I. Zgurskaya, M. Niederweis, Chem. Rev., 10.1021/acs.chemrev.0c00869 (2020)]. In this work, we use CRISPR interference methodology in Mycobacterium smegmatis to functionally characterize an ATP-binding cassette (ABC) transporter involved in the translocation of galactan precursors across the plasma membrane. We show that genetic knockdown of the transmembrane subunit of the transporter results in severe morphological changes and the accumulation of an aberrantly long galactan precursor. Based on similarities with structures and functions of specific O-antigen ABC transporters of gram-negative bacteria [C. Whitfield, D. M. Williams, S. D. Kelly, J. Biol. Chem. 295, 10593-10609 (2020)], we propose a model for coupled synthesis and export of the galactan polymer precursor in mycobacteria.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Galactanos/metabolismo , Lipopolissacarídeos/metabolismo , Mycobacterium smegmatis/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Modelos Moleculares , Mycobacterium smegmatis/genética
4.
Int J Mol Sci ; 24(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37240090

RESUMO

Changes in protein glycosylation are associated with most biological processes, and the importance of glycomic analysis in the research of disorders is constantly increasing, including in the neurodevelopmental field. We glycoprofiled sera in 10 children with attention-deficit hyperactivity disorder (ADHD) and 10 matching healthy controls for 3 types of samples: whole serum, sera after depletion of abundant proteins (albumin and IgG), and isolated IgG. The analytical methods used were a lectin-based glycoprotein microarray enabling high-throughput glycan analysis and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) as a standard method for the identification of glycan structures. For microarray analysis, the samples printed on microarray slides were incubated with biotinylated lectins and detected using the fluorescent conjugate of streptavidin by a microarray scanner. In the ADHD patient samples, we found increased antennary fucosylation, decreased di-/triantennary N-glycans with bisecting N-acetylglucosamine (GlcNAc), and decreased α2-3 sialylation. The results obtained by both independent methods were consistent. The study's sample size and design do not allow far-reaching conclusions to be drawn. In any case, there is a strong demand for a better and more comprehensive diagnosis of ADHD, and the obtained results emphasize that the presented approach brings new horizons to studying functional associations of glycan alterations in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Humanos , Glicoproteínas/química , Polissacarídeos/química , Lectinas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Imunoglobulina G/metabolismo
5.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175518

RESUMO

Endometrial cancer belongs to the most common gynecologic cancer types globally, with increasing incidence. There are numerous ways of classifying different cases. The most recent decade has brought advances in molecular classification, which show more accurate prognostic factors and the possibility of personalised adjuvant treatment. In addition, diagnostic approaches lag behind these advances, with methods causing patients discomfort while lacking the reproducibility of tissue sampling for biopsy. Minimally invasive liquid biopsies could therefore represent an alternative screening and diagnostic approach in patients with endometrial cancer. The method could potentially detect molecular changes in this cancer type and identify patients at early stages. In this pilot study, we tested such a detection method based on circulating tumour DNA isolated from the peripheral blood plasma of 21 Slovak endometrial cancer patients. We successfully detected oncomutations in the circulating DNA of every single patient, although the prognostic value of the detected mutations failed to offer certainty. Furthermore, we detected changes associated with clonal hematopoiesis, including DNMT3A mutations, which were present in the majority of circulating tumour DNA samples.


Assuntos
DNA Tumoral Circulante , Neoplasias do Endométrio , Humanos , Feminino , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Projetos Piloto , Reprodutibilidade dos Testes , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Mutação , Biópsia Líquida/métodos
6.
J Biol Chem ; 297(4): 101155, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480900

RESUMO

Acylation modifications, such as the succinylation of lysine, are post-translational modifications and a powerful means of regulating protein activity. Some acylations occur nonenzymatically, driven by an increase in the concentration of acyl group donors. Lysine succinylation has a profound effect on the corresponding site within the protein, as it dramatically changes the charge of the residue. In eukaryotes, it predominantly affects mitochondrial proteins because the donor of succinate, succinyl-CoA, is primarily generated in the tricarboxylic acid cycle. Although numerous succinylated mitochondrial proteins have been identified in Saccharomyces cerevisiae, a more detailed characterization of the yeast mitochondrial succinylome is still lacking. Here, we performed a proteomic MS analysis of purified yeast mitochondria and detected 314 succinylated mitochondrial proteins with 1763 novel succinylation sites. The mitochondrial nucleoid, a complex of mitochondrial DNA and mitochondrial proteins, is one of the structures whose protein components are affected by succinylation. We found that Abf2p, the principal component of mitochondrial nucleoids responsible for compacting mitochondrial DNA in S. cerevisiae, can be succinylated in vivo on at least thirteen lysine residues. Abf2p succinylation in vitro inhibits its DNA-binding activity and reduces its sensitivity to digestion by the ATP-dependent ScLon protease. We conclude that changes in the metabolic state of a cell resulting in an increase in the concentration of tricarboxylic acid intermediates may affect mitochondrial functions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Protease La/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Protease La/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
7.
BMC Biol ; 19(1): 251, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819072

RESUMO

BACKGROUND: The phylum Euglenozoa is a group of flagellated protists comprising the diplonemids, euglenids, symbiontids, and kinetoplastids. The diplonemids are highly abundant and speciose, and recent tools have rendered the best studied representative, Diplonema papillatum, genetically tractable. However, despite the high diversity of diplonemids, their lifestyles, ecological functions, and even primary energy source are mostly unknown. RESULTS: We designed a metabolic map of D. papillatum cellular bioenergetic pathways based on the alterations of transcriptomic, proteomic, and metabolomic profiles obtained from cells grown under different conditions. Comparative analysis in the nutrient-rich and nutrient-poor media, as well as the absence and presence of oxygen, revealed its capacity for extensive metabolic reprogramming that occurs predominantly on the proteomic rather than the transcriptomic level. D. papillatum is equipped with fundamental metabolic routes such as glycolysis, gluconeogenesis, TCA cycle, pentose phosphate pathway, respiratory complexes, ß-oxidation, and synthesis of fatty acids. Gluconeogenesis is uniquely dominant over glycolysis under all surveyed conditions, while the TCA cycle represents an eclectic combination of standard and unusual enzymes. CONCLUSIONS: The identification of conventional anaerobic enzymes reflects the ability of this protist to survive in low-oxygen environments. Furthermore, its metabolism quickly reacts to restricted carbon availability, suggesting a high metabolic flexibility of diplonemids, which is further reflected in cell morphology and motility, correlating well with their extreme ecological valence.


Assuntos
Prófase Meiótica I , Proteômica , Euglenozoários/genética , Eucariotos , Oxigênio , Filogenia
8.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361590

RESUMO

Pre-mRNA splicing plays a fundamental role in securing protein diversity by generating multiple transcript isoforms from a single gene. Recently, it has been shown that specific G-patch domain-containing proteins are critical cofactors involved in the regulation of splicing processes. In this study, using the knock-out strategy, affinity purification and the yeast-two-hybrid assay, we demonstrated that the spliceosome-associated G-patch protein Gpl1 of the fission yeast S. pombe mediates interactions between putative RNA helicase Gih35 (SPAC20H4.09) and WD repeat protein Wdr83, and ensures their binding to the spliceosome. Furthermore, RT-qPCR analysis of the splicing efficiency of deletion mutants indicated that the absence of any of the components of the Gpl1-Gih35-Wdr83 complex leads to defective splicing of fet5 and pwi1, the reference genes whose unspliced isoforms harboring premature stop codons are targeted for degradation by the nonsense-mediated decay (NMD) pathway. Together, our results shed more light on the functional interactome of G-patch protein Gpl1 and revealed that the Gpl1-Gih35-Wdr83 complex plays an important role in the regulation of pre-mRNA splicing in S. pombe.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Precursores de RNA/genética , Splicing de RNA , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
9.
FEMS Yeast Res ; 21(5)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34089318

RESUMO

The 3-oxoacyl-CoA thiolases catalyze the last step of the fatty acid ß-oxidation pathway. In yeasts and plants, this pathway takes place exclusively in peroxisomes, whereas in animals it occurs in both peroxisomes and mitochondria. In contrast to baker's yeast Saccharomyces cerevisiae, yeast species from the Debaryomycetaceae family also encode a thiolase with predicted mitochondrial localization. These yeasts are able to utilize a range of hydroxyaromatic compounds via the 3-oxoadipate pathway the last step of which is catalyzed by 3-oxoadipyl-CoA thiolase and presumably occurs in mitochondria. In this work, we studied Oct1p, an ortholog of this enzyme from Candida parapsilosis. We found that the cells grown on a 3-oxoadipate pathway substrate exhibit increased levels of the OCT1 mRNA. Deletion of both OCT1 alleles impairs the growth of C. parapsilosis cells on 3-oxoadipate pathway substrates and this defect can be rescued by expression of the OCT1 gene from a plasmid vector. Subcellular localization experiments and LC-MS/MS analysis of enriched organellar fraction-proteins confirmed the presence of Oct1p in mitochondria. Phylogenetic profiling of Oct1p revealed an intricate evolutionary pattern indicating multiple horizontal gene transfers among different fungal groups.


Assuntos
Saccharomyces cerevisiae , Espectrometria de Massas em Tandem , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Aciltransferase/genética , Animais , Cromatografia Líquida , Mitocôndrias , Filogenia , Saccharomyces cerevisiae/genética
10.
Am J Med Genet A ; 185(11): 3494-3501, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34467644

RESUMO

Congenital disorder of glycosylation type Ig (ALG12-CDG) is a rare inherited metabolic disease caused by a defect in alpha-mannosyltransferase 8, encoded by the ALG12 gene (22q13.33). To date, only 15 patients have been diagnosed with ALG12-CDG globally. Due to a newborn Slovak patient's clinical and biochemical abnormalities, the isoelectric focusing of transferrin was performed with observed significant hypoglycosylation typical of CDG I. Furthermore, analysis of neutral serum N-glycans by mass spectrometry revealed the accumulation of GlcNAc2Man5-7 and decreased levels of GlcNAc2Man8-9, which indicated impaired ALG12 enzymatic activity. Genetic analysis of the coding regions of the ALG12 gene of the patient revealed a novel homozygous substitution mutation c.1439T>C p.(Leu480Pro) within Exon 10. Furthermore, both of the patient's parents and his twin sister were asymptomatic heterozygous carriers of the variant. This comprehensive genomic and glycomic approach led to the confirmation of the ALG12 pathogenic variant responsible for the clinical manifestation of the disorder in the patient described.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Predisposição Genética para Doença , Manosiltransferases/genética , Polissacarídeos/genética , Defeitos Congênitos da Glicosilação/epidemiologia , Defeitos Congênitos da Glicosilação/patologia , Feminino , Testes Genéticos , Glicosilação , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Polissacarídeos/metabolismo , Eslováquia/epidemiologia , Transferrina/genética
11.
Parasitology ; 148(10): 1161-1170, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33407966

RESUMO

Complex I (NADH dehydrogenase) is the first enzyme in the respiratory chain. It catalyses the electron transfer from NADH to ubiquinone that is associated with proton pumping out of the matrix. In this study, we characterized NADH dehydrogenase activity in seven monoxenous trypanosomatid species: Blechomonas ayalai, Herpetomonas tarakana, Kentomonas sorsogonicus, Leptomonas seymouri, Novymonas esmeraldas, Sergeia podlipaevi and Wallacemonas raviniae. We also investigated the subunit composition of the complex I in dixenous Phytomonas serpens, in which its presence and activity have been previously documented. In addition to P. serpens, the complex I is functionally active in N. esmeraldas and S. podlipaevi. We also identified 24-32 subunits of the complex I in individual species by using mass spectrometry. Among them, for the first time, we recognized several proteins of the mitochondrial DNA origin.


Assuntos
Proteínas Mitocondriais/genética , NADH Desidrogenase/genética , Proteínas de Protozoários/genética , Trypanosomatina/genética , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/metabolismo , Proteínas de Protozoários/metabolismo , Especificidade da Espécie , Trypanosomatina/enzimologia
12.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360993

RESUMO

The ferroxidase ceruloplasmin (CP) plays a crucial role in iron homeostasis in vertebrates together with the iron exporter ferroportin. Mutations in the CP gene give rise to aceruloplasminemia, a rare neurodegenerative disease for which no cure is available. Many aspects of the (patho)physiology of CP are still unclear and would benefit from the availability of recombinant protein for structural and functional studies. Furthermore, recombinant CP could be evaluated for enzyme replacement therapy for the treatment of aceruloplasminemia. We report the production and preliminary characterization of high-quality recombinant human CP in glycoengineered Pichia pastoris SuperMan5. A modified yeast strain lacking the endogenous ferroxidase has been generated and employed as host for heterologous expression of the secreted isoform of human CP. Highly pure biologically active protein has been obtained by an improved two-step purification procedure. Glycan analysis indicates that predominant glycoforms HexNAc2Hex8 and HexNAc2Hex11 are found at Asn119, Asn378, and Asn743, three of the canonical four N-glycosylation sites of human CP. The availability of high-quality recombinant human CP represents a significant advancement in the field of CP biology. However, productivity needs to be increased and further careful glycoengineering of the SM5 strain is mandatory in order to evaluate the possible therapeutic use of the recombinant protein for enzyme replacement therapy of aceruloplasminemia patients.


Assuntos
Ceruloplasmina/genética , Microbiologia Industrial/métodos , Engenharia de Proteínas/métodos , Saccharomycetales/genética , Ceruloplasmina/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/metabolismo
13.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572424

RESUMO

The phosphorylation of proteins modulates various functions of proteins and plays an important role in the regulation of cell signaling. In recent years, label-free quantitative (LFQ) phosphoproteomics has become a powerful tool to analyze the phosphorylation of proteins within complex samples. Despite the great progress, the studies of protein phosphorylation are still limited in throughput, robustness, and reproducibility, hampering analyses that involve multiple perturbations, such as those needed to follow the dynamics of phosphoproteomes. To address these challenges, we introduce here the LFQ phosphoproteomics workflow that is based on Fe-IMAC phosphopeptide enrichment followed by strong anion exchange (SAX) and porous graphitic carbon (PGC) fractionation strategies. We applied this workflow to analyze the whole-cell phosphoproteome of the fission yeast Schizosaccharomyces pombe. Using this strategy, we identified 8353 phosphosites from which 1274 were newly identified. This provides a significant addition to the S. pombe phosphoproteome. The results of our study highlight that combining of PGC and SAX fractionation strategies substantially increases the robustness and specificity of LFQ phosphoproteomics. Overall, the presented LFQ phosphoproteomics workflow opens the door for studies that would get better insight into the complexity of the protein kinase functions of the fission yeast S. pombe.


Assuntos
Fracionamento Químico/métodos , Fosfoproteínas/análise , Proteômica/métodos , Proteínas de Schizosaccharomyces pombe/análise , Resinas de Troca Aniônica/química , Carbono/química , Cromatografia por Troca Iônica/métodos , Grafite/química , Fosfoproteínas/química , Porosidade , Reprodutibilidade dos Testes , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/química
14.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209806

RESUMO

Pre-mRNA splicing is a key process in the regulation of gene expression. In the fission yeast Schizosaccharomyces pombe, Nrl1 regulates splicing and expression of several genes and non-coding RNAs, and also suppresses the accumulation of R-loops. Here, we report analysis of interactions between Nrl1 and selected RNA-processing proteins and regulation of Nrl1 function by phosphorylation. Bacterial two-hybrid system (BACTH) assays revealed that the N-terminal region of Nrl1 is important for the interaction with ATP-dependent RNA helicase Mtl1 while the C-terminal region of Nrl1 is important for interactions with spliceosome components Ctr1, Ntr2, and Syf3. Consistent with this result, tandem affinity purification showed that Mtl1, but not Ctr1, Ntr2, or Syf3, co-purifies with the N-terminal region of Nrl1. Interestingly, mass-spectrometry analysis revealed that in addition to previously identified phosphorylation sites, Nrl1 is also phosphorylated on serines 86 and 112, and that Nrl1-TAP co-purifies with Cka1, the catalytic subunit of casein kinase 2. In vitro assay showed that Cka1 can phosphorylate bacterially expressed Nrl1 fragments. An analysis of non-phosphorylatable nrl1 mutants revealed defects in gene expression and splicing consistent with the notion that phosphorylation is an important regulator of Nrl1 function. Taken together, our results provide insights into two mechanisms that are involved in the regulation of the spliceosome-associated factor Nrl1, namely domain-specific interactions between Nrl1 and RNA-processing proteins and post-translational modification of Nrl1 by phosphorylation.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Caseína Quinase II/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Processamento Pós-Transcricional do RNA , Splicing de RNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Spliceossomos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
15.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076458

RESUMO

Protein kinases are important enzymes involved in the regulation of various cellular processes. To function properly, each protein kinase phosphorylates only a limited number of proteins among the thousands present in the cell. This provides a rapid and dynamic regulatory mechanism that controls biological functions of the proteins. Despite the importance of protein kinases, most of their substrates remain unknown. Recently, the advances in the fields of protein engineering, chemical genetics, and mass spectrometry have boosted studies on identification of bona fide substrates of protein kinases. Among the various methods in protein kinase specific substrate identification, genetically engineered protein kinases and quantitative phosphoproteomics have become promising tools. Herein, we review the current advances in the field of chemical genetics in analog-sensitive protein kinase mutants and highlight selected strategies for identifying protein kinase substrates and studying the dynamic nature of protein phosphorylation.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteômica/métodos , Animais , Humanos , Espectrometria de Massas/métodos , Fosfoproteínas/química , Fosfoproteínas/genética , Mapeamento de Interação de Proteínas/métodos , Proteínas Quinases/química , Proteínas Quinases/genética , Proteoma/química , Proteoma/genética , Proteoma/metabolismo
16.
Chemistry ; 25(56): 12946-12956, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31306528

RESUMO

The lipopolysaccharide (LPS) of Vibrio cholerae O139, strain CIRS245, was isolated conventionally, and the lipid A was removed by mild acid hydrolysis (0.1 m NaOAc buffer containing 1 % SDS, pH 4.2, 95 °C, 8 h). The crude product was a complex mixture consisting mainly of constituent fragments of the O-specific polysaccharide-core (OSPc). The OSPc was only a minor component in the mixture. Two-stage purification of the crude OSPc by HPLC gave pure OSPc fragment of the LPS, as shown by NMR spectroscopy, analytical HPLC and ESI-MS. This material is the purest OSPc fragment of the LPS from Vibrio cholerae O139 reported to date. The purified OSPc was readily converted to the corresponding methyl squarate derivative and the latter was conjugated to BSA. The conjugate, when examined by ELISA, showed immunoreactivity with sera from patients in Bangladesh recovering from cholera caused by V. cholerae O139, but not O1.


Assuntos
Lipopolissacarídeos/química , Vibrio cholerae O139/metabolismo , Cromatografia Líquida de Alta Pressão , Hidrólise , Lipídeo A/metabolismo , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Acetato de Sódio/química , Espectrometria de Massas por Ionização por Electrospray
17.
Appl Microbiol Biotechnol ; 102(15): 6525-6536, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29948116

RESUMO

In this work, we describe the preparation and characterization of a biopreparate for efficient and rapid animal glue removal. The biopreparate is based on the extracellular proteolytic enzymes of an Exiguobacterium undae environmental isolate. Liquid chromatography-mass spectrometry analysis showed that the biopreparate is predominantly composed of hydrolytic enzymes-proteases and peptidases, nucleases, peptide ABC transporter substrate-binding proteins, and a phosphatase. The two main proteins present are bacillolysin and a peptide ABC transporter substrate-binding protein. Inhibition and proteomic analyses of the biopreparate revealed that bacillolysin, a neutral metalloendopeptidase, is mainly responsible for its proteolytic activity. This biopreparate was able to satisfactorily remove two types of animal glue from different kinds of material surfaces. These results suggest that this biopreparate could serve as a potential new tool for the restoration of historical objects rather than living microorganisms.


Assuntos
Adesivos/metabolismo , Antropologia Cultural/métodos , Bacillaceae/enzimologia , Animais , Bacillaceae/química , Bacillaceae/genética , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Metaloendopeptidases/metabolismo , Proteoma , Proteômica , Espectrometria de Massas em Tandem
18.
Artigo em Inglês | MEDLINE | ID: mdl-28874370

RESUMO

The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Terapia de Alvo Molecular/métodos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Radiometria/métodos , Transferases/análise , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Tuberculose/microbiologia , Tunicamicina/farmacologia , Uridina/análogos & derivados , Uridina/farmacologia
19.
Proteomics ; 16(24): 3085-3095, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26920336

RESUMO

The construction of a sensitive electrochemical lectin-based immunosensor for detection of a prostate specific antigen (PSA) is shown here. Three lectins with different carbohydrate specificities were used in this study to glycoprofile PSA, which is the most common biomarker for prostate cancer (PCa) diagnosis. The biosensor showed presence of α-L-fucose and α-(2,6)-linked terminal sialic acid within PSA´s glycan with high abundance, while only traces of α-(2,3)-linked terminal sialic acid were found. MALDI TOF/TOF mass spectrometry was applied to validate results obtained by the biosensor with a focus on determination of a type of sialic acid linkage by two methods. The first direct comparison of electrochemical immunosensor assay employing lectins for PSA glycoprofiling with mass spectrometric techniques is provided here and both methods show significant agreement. Thus, electrochemical lectin-based immunosensor has potential to be applied for prostate cancer diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Ácido N-Acetilneuramínico/análise , Antígeno Prostático Específico/análise , Anticorpos Imobilizados/química , Impedância Elétrica , Humanos , Lectinas/química , Limite de Detecção , Masculino , Neoplasias da Próstata/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA