Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Neuroinflammation ; 19(1): 65, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277173

RESUMO

BACKGROUND: Membrane-type matrix metalloproteinase 5 (MT5-MMP) deficiency in the 5xFAD mouse model of Alzheimer's disease (AD) reduces brain neuroinflammation and amyloidosis, and prevents deficits in synaptic activity and cognition in prodromal stages of the disease. In addition, MT5-MMP deficiency prevents interleukin-1 beta (IL-1ß)-mediated inflammation in the peripheral nervous system. In this context, we hypothesized that the MT5-MMP/IL-1ß tandem could regulate nascent AD pathogenic events in developing neural cells shortly after the onset of transgene activation. METHODS: To test this hypothesis, we used 11-14 day in vitro primary cortical cultures from wild type, MT5-MMP-/-, 5xFAD and 5xFAD/MT5-MMP-/- mice, and evaluated the impact of MT5-MMP deficiency and IL-1ß treatment for 24 h, by performing whole cell patch-clamp recordings, RT-qPCR, western blot, gel zymography, ELISA, immunocytochemistry and adeno-associated virus (AAV)-mediated transduction. RESULTS: 5xFAD cells showed higher levels of MT5-MMP than wild type, concomitant with higher basal levels of inflammatory mediators. Moreover, MT5-MMP-deficient cultures had strong decrease of the inflammatory response to IL-1ß, as well as decreased stability of recombinant IL-1ß. The levels of amyloid beta peptide (Aß) were similar in 5xFAD and wild-type cultures, and IL-1ß treatment did not affect Aß levels. Instead, the absence of MT5-MMP significantly reduced Aß by more than 40% while sparing APP metabolism, suggesting altogether no functional crosstalk between IL-1ß and APP/Aß, as well as independent control of their levels by MT5-MMP. The lack of MT5-MMP strongly downregulated the AAV-induced neuronal accumulation of the C-terminal APP fragment, C99, and subsequently that of Aß. Finally, MT5-MMP deficiency prevented basal hyperexcitability observed in 5xFAD neurons, but not hyperexcitability induced by IL-1ß treatment. CONCLUSIONS: Neuroinflammation and hyperexcitability precede Aß accumulation in developing neural cells with nascent expression of AD transgenes. MT5-MMP deletion is able to tune down basal neuronal inflammation and hyperexcitability, as well as APP/Aß metabolism. In addition, MT5-MMP deficiency prevents IL-1ß-mediated effects in brain cells, except hyperexcitability. Overall, this work reinforces the idea that MT5-MMP is at the crossroads of pathogenic AD pathways that are already incipiently activated in developing neural cells, and that targeting MT5-MMP opens interesting therapeutic prospects.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias , Neurônios/metabolismo
2.
FASEB J ; 35(7): e21727, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34117802

RESUMO

We previously discovered the implication of membrane-type 5-matrix metalloproteinase (MT5-MMP) in Alzheimer's disease (AD) pathogenesis. Here, we shed new light on pathogenic mechanisms by which MT5-MMP controls the processing of amyloid precursor protein (APP) and the fate of amyloid beta peptide (Aß) as well as its precursor C99, and C83. We found in human embryonic kidney cells (HEK) carrying the APP Swedish familial mutation (HEKswe) that deleting the C-terminal non-catalytic domains of MT5-MMP hampered its ability to process APP and release the soluble 95 kDa form (sAPP95). Catalytically inactive MT5-MMP variants increased the levels of Aß and promoted APP/C99 sorting in the endolysosomal system, likely through interactions of the proteinase C-terminal portion with C99. Most interestingly, the deletion of the C-terminal domain of MT5-MMP caused a strong degradation of C99 by the proteasome and prevented Aß accumulation. These discoveries reveal new control of MT5-MMP over APP by proteolytic and non-proteolytic mechanisms driven by the C-terminal domains of the proteinase. The targeting of these non-catalytic domains of MT5-MMP could, therefore, provide new insights into the therapeutic regulation of APP-related pathology in AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteólise
3.
Mar Drugs ; 19(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677445

RESUMO

Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE "modulator" capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.


Assuntos
Antineoplásicos/farmacologia , Carragenina/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Glucuronidase/metabolismo , Rodófitas , Animais , Antineoplásicos/química , Organismos Aquáticos , Neoplasias da Mama , Carragenina/química , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo
4.
FASEB J ; 33(2): 2910-2927, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30332299

RESUMO

We previously demonstrated that membrane type 1 (MT1) matrix metalloproteinase (MMP) was up-regulated in the hippocampus of the model of transgenic mice bearing 5 familial mutations on human amyloid precursor protein (APP) and presenilin 1 of Alzheimer disease (AD), and that the proteinase increased the levels of amyloid ß peptide (Aß) and its APP C-terminal fragment of 99 aa in a heterologous cell system. Here we provide further evidence that MT1-MMP interacts with APP and promotes amyloidogenesis in a proteolytic-dependent manner in Swedish APP-expressing human embryonic kidney 293 (HEKswe) cells. MT1-MMP-mediated processing of APP releases a soluble APP fragment, sAPP95. This process partly requires the activation of endogenous MMP-2 but is independent of ß-site APP cleaving enzyme 1 (BACE-1) or α-secretase activities. In contrast, MT1-MMP-mediated increase of Aß levels involved BACE-1 activity and was inhibited by tissue inhibitor of MMP-2, a natural inhibitor of both MT1-MMP and MMP-2. Interestingly, near abolishment of basal Aß production upon BACE-1 inhibition was rescued by MT1-MMP, indicating that the latter could mimic ß-secretase-like activity. Moreover, MT1-MMP promoted APP/Aß localization in endosomes, where Aß production mainly occurs. These data unveil new mechanistic insights to support the proamyloidogenic role of MT1-MMP based on APP processing and trafficking, and reinforce the idea that this proteinase may become a new potential therapeutic target in AD.-Paumier, J.-M., Py, N. A., González, L. G., Bernard, A., Stephan, D., Louis, L., Checler, F., Khrestchatisky, M., Baranger, K., Rivera, S. Proamyloidogenic effects of membrane type 1 matrix metalloproteinase involve MMP-2 and BACE-1 activities, and the modulation of APP trafficking.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloide/química , Ácido Aspártico Endopeptidases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metaloproteinase 14 da Matriz/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Células HEK293 , Humanos , Metaloproteinase 2 da Matriz/genética , Camundongos , Camundongos Transgênicos , Transporte Proteico
5.
Cell Mol Life Sci ; 76(16): 3167-3191, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31197405

RESUMO

As life expectancy increases worldwide, age-related neurodegenerative diseases will increase in parallel. The lack of effective treatment strategies may soon lead to an unprecedented health, social and economic crisis. Any attempt to halt the progression of these diseases requires a thorough knowledge of the pathophysiological mechanisms involved to facilitate the identification of new targets and the application of innovative therapeutic strategies. The metzincin superfamily of metalloproteinases includes matrix metalloproteinases (MMP), a disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS). These multigenic and multifunctional proteinase families regulate the functions of an increasing number of signalling and scaffolding molecules involved in neuroinflammation, blood-brain barrier disruption, protein misfolding, synaptic dysfunction or neuronal death. Metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), are therefore, at the crossroads of molecular and cellular mechanisms that support neurodegenerative processes, and emerge as potential new therapeutic targets. We provide an overview of current knowledge on the role and regulation of metalloproteinases and TIMPs in four major neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease.


Assuntos
Doença de Alzheimer/patologia , Metaloproteinases da Matriz/metabolismo , Doenças Neurodegenerativas/patologia , Inibidores Teciduais de Metaloproteinases/metabolismo , Proteínas ADAM/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
6.
Cell Mol Life Sci ; 73(1): 217-36, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26202697

RESUMO

Membrane-type 5-matrix metalloproteinase (MT5-MMP) is a proteinase mainly expressed in the nervous system with emerging roles in brain pathophysiology. The implication of MT5-MMP in Alzheimer's disease (AD), notably its interplay with the amyloidogenic process, remains elusive. Accordingly, we crossed the genetically engineered 5xFAD mouse model of AD with MT5-MMP-deficient mice and examined the impact of MT5-MMP deficiency in bigenic 5xFAD/MT5-MMP(-/-) mice. At early stages (4 months) of the pathology, the levels of amyloid beta peptide (Aß) and its amyloid precursor protein (APP) C-terminal fragment C99 were largely reduced in the cortex and hippocampus of 5xFAD/MT5-MMP(-/-), compared to 5xFAD mice. Reduced amyloidosis in bigenic mice was concomitant with decreased glial reactivity and interleukin-1ß (IL-1ß) levels, and the preservation of long-term potentiation (LTP) and spatial learning, without changes in the activity of α-, ß- and γ-secretases. The positive impact of MT5-MMP deficiency was still noticeable at 16 months of age, as illustrated by reduced amyloid burden and gliosis, and a better preservation of the cortical neuronal network and synaptophysin levels in bigenic mice. MT5-MMP expressed in HEKswe cells colocalized and co-immunoprecipitated with APP and significantly increased the levels of Aß and C99. MT5-MMP also promoted the release of a soluble APP fragment of 95 kDa (sAPP95) in HEKswe cells. sAPP95 levels were significantly reduced in brain homogenates of 5xFAD/MT5-MMP(-/-) mice, supporting altogether the idea that MT5-MMP influences APP processing. MT5-MMP emerges as a new pro-amyloidogenic regulator of APP metabolism, whose deficiency alleviates amyloid pathology, neuroinflammation and cognitive decline.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/fisiopatologia , Hipocampo/enzimologia , Hipocampo/fisiopatologia , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/análise , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/análise , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cognição , Feminino , Deleção de Genes , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Potenciação de Longa Duração , Masculino , Metaloproteinases da Matriz Associadas à Membrana/análise , Metaloproteinases da Matriz Associadas à Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Aprendizagem Espacial
7.
Neurobiol Dis ; 88: 107-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26774030

RESUMO

Clinical and experimental evidence point to a possible role of cerebrovascular dysfunction in Alzheimer's disease (AD). The 5xFAD mouse model of AD expresses human amyloid precursor protein and presenilin genes with mutations found in AD patients. It remains unknown whether amyloid deposition driven by these mutations is associated with cerebrovascular changes. 5xFAD and wild type mice (2 to 12months old; M2 to M12) were used. Thinned skull in vivo 2-photon microscopy was used to determine Aß accumulation on leptomeningeal or superficial cortical vessels over time. Parenchymal microvascular damage was assessed using FITC-microangiography. Collagen-IV and CD31 were used to stain basal lamina and endothelial cells. Methoxy-XO4, Thioflavin-S or 6E10 were used to visualize Aß accumulation in living mice or in fixed brain tissues. Positioning of reactive IBA1 microglia and GFAP astrocytes at the vasculature was rendered using confocal microscopy. Platelet-derived growth factor receptor beta (PDGFRß) staining was used to visualize perivascular pericytes. In vivo 2-photon microscopy revealed Methoxy-XO4(+) amyloid perivascular deposits on leptomeningeal and penetrating cortical vessels in 5xFAD mice, typical of cerebral amyloid angiopathy (CAA). Amyloid deposits were visible in vivo at M3 and aggravated over time. Progressive microvascular damage was concomitant to parenchymal Aß plaque accumulation in 5xFAD mice. Microvascular inflammation in 5xFAD mice presented with sporadic FITC-albumin leakages at M4 becoming more prevalent at M9 and M12. 3D colocalization showed inflammatory IBA1(+) microglia proximal to microvascular FITC-albumin leaks. The number of perivascular PDGFRß(+) pericytes was significantly decreased at M4 in the fronto-parietal cortices, with a trend decrease observed in the other structures. At M9-M12, PDGFRß(+) pericytes displayed hypertrophic perivascular ramifications contiguous to reactive microglia. Cerebral amyloid angiopathy and microvascular inflammation occur in 5xFAD mice concomitantly to parenchymal plaque deposition. The prospect of cerebrovascular pharmacology in AD is discussed.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Vasos Sanguíneos/patologia , Circulação Cerebrovascular/genética , Fatores Etários , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Pericitos/metabolismo , Pericitos/patologia , Placa Amiloide/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Presenilina-1/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
8.
J Neuroinflammation ; 13(1): 167, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27349644

RESUMO

We have recently identified in a transgenic mouse model of Alzheimer's disease (AD) membrane-type 5-MMP (MT5-MMP) as a new player in Alzheimer's pathogenesis, which displays pro-amyloidogenic features and proteolytic processing of amyloid precursor protein (APP). Another group has reported that MT5-MMP processing of APP may release a novel neurotoxic APP fragment. Although MT5-MMP-mediated APP processing appears to be a key pathogenic step, we hypothesize that MT5-MMP may also contribute to AD pathogenesis through complementary mechanisms that involve the activation of pro-inflammatory pathways and/or APP trafficking.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Metaloproteinases da Matriz Associadas à Membrana/toxicidade , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
9.
Hippocampus ; 24(7): 762-72, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24596271

RESUMO

The 5XFAD mice are an early-onset transgenic model of Alzheimer's disease (AD) in which amyloid plaques are first observed between two and four months of age in the cortical layer five and in the subiculum of the hippocampal formation. Although cognitive alterations have been described in these mice, there are no studies that focused on the onset of hippocampus-dependent memory deficits, which are a hallmark of the prodromal stage of AD. To identify when the first learning and memory impairments appear, 5XFAD mice of two, four, and six months of age were compared with their respective wild-type littermates using the olfactory tubing maze, which is a very sensitive hippocampal-dependent task. Deficits in learning and memory started at four months with a substantial increase at six months of age while no olfactory impairments were observed. The volumetric study using magnetic resonance imaging of the whole brain and specific areas (olfactory bulb, striatum, and hippocampus) did not reveal neuro-anatomical difference. Slight memory deficits appeared at 4 months of age in correlation with an increased astrogliosis and amyloid plaque formation. This early impairment in learning and memory related to the hippocampal dysfunction is particularly suited to assess preclinical therapeutic strategies aiming to delay or suppress the onset of AD.


Assuntos
Doença de Alzheimer/psicologia , Hipocampo/fisiopatologia , Deficiências da Aprendizagem/etiologia , Transtornos da Memória/etiologia , Idade de Início , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/patologia , Corpo Estriado/patologia , Gliose/etiologia , Gliose/patologia , Hipocampo/patologia , Deficiências da Aprendizagem/patologia , Deficiências da Aprendizagem/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Transgênicos , Bulbo Olfatório/patologia , Tamanho do Órgão , Placa Amiloide/etiologia , Placa Amiloide/patologia , Mutação Puntual , Presenilina-1/genética , Olfato/fisiologia
10.
J Neuroinflammation ; 9: 10, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22248015

RESUMO

BACKGROUND: Alzheimer's disease has become a growing socio-economical concern in developing countries where increased life expectancy is leading to large aged populations. While curing Alzheimer's disease or stopping its progression does not appear within reach in a foreseeable future, new therapies capable of delaying the pathogenesis would represent major breakthroughs. PRESENTATION OF THE HYPOTHESIS: The growing number of medical benefits of cannabinoids, such as their ability to regulate age-related processes like neuroinflammation, neurogenesis and memory, raise the question of their potential role as a preventive treatment of AD. TESTING THE HYPOTHESIS: To test this hypothesis, epidemiological studies on long term, chronic cannabinoid users could enlighten us on the potential benefits of these compounds in normal and pathological ageing processes. Systematic pharmacological (and thus more mechanistic) investigations using animal models of Alzheimer's disease that have been developed would also allow a thorough investigation of the benefits of cannabinoid pharmacotherapy in the pathogenesis of Alzheimer's disease. IMPLICATIONS OF THE HYPOTHESIS: The chronic administration of non-selective cannabinoids may delay the onset of cognitive deficits in AD patients; this will dramatically reduce the socio-economic burden of AD and improve the quality of life of the patients and their families.


Assuntos
Envelhecimento , Doença de Alzheimer/metabolismo , Encefalite/prevenção & controle , Memória/fisiologia , Neurogênese/fisiologia , Receptores de Canabinoides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Animais , Humanos , Memória/efeitos dos fármacos , Modelos Biológicos , Neurogênese/efeitos dos fármacos
11.
J Alzheimers Dis ; 90(1): 251-262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093693

RESUMO

BACKGROUND: The 5XFAD model of Alzheimer's disease (AD) bearing five familial mutations of Alzheimer's disease on human APP and PSEN1 transgenes shows deposits of amyloid-ß peptide (Aß) as early as 2 months, while deficits in long-term memory can be detected at 4 months using the highly sensitive olfactory-dependent tests that we previously reported. OBJECTIVE: Given that detecting early dysfunctions in AD prior to overt pathology is of major interest in the field, we sought to detect memory deficits at earlier stages of the disease in 3-month-old male 5XFAD mice. METHODS: To this end, we used the Helico Maze, a behavioral task that was recently developed and patented. This device allows deeper analysis of learning and subcategories of hippocampal-dependent long-term memory using olfactory cues. RESULTS: Eight male 5XFAD and 6 male wild-type (WT: C57Bl6 background) mice of 3 months of age were tested in the Helico Maze. The results demonstrated, for the first time, a starting deficit of pure reference long-term memory. Interestingly, memory impairment was clearly correlated with Aß deposits in the hippocampus. While we also found significant differences in astrogliosis between 5XFAD and WT mice, this was not correlated with memory abilities. CONCLUSION: Our results underline the efficiency of this new olfactory-dependent behavioral task, which is easy to use, with a small cohort of mice. Using the Helico Maze may open new avenues to validate the efficacy of treatments that target early events related to the amyloid-dependent pathway of the disease and AD progression.


Assuntos
Doença de Alzheimer , Humanos , Animais , Camundongos , Masculino , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos Endogâmicos C57BL , Aprendizagem em Labirinto
12.
Cell Rep ; 40(7): 111200, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977506

RESUMO

Apolipoprotein E4 (APOEε4) is the major allelic risk factor for late-onset sporadic Alzheimer's disease (sAD). Inflammation is increasingly considered as critical in sAD initiation and progression. Identifying brain molecular mechanisms that could bridge these two risk factors remain unelucidated. Leveraging induced pluripotent stem cell (iPSC)-based strategies, we demonstrate that APOE controls inflammation in human astrocytes by regulating Transgelin 3 (TAGLN3) expression and, ultimately, nuclear factor κB (NF-κB) activation. We uncover that APOE4 specifically downregulates TAGLN3, involving histone deacetylases activity, which results in low-grade chronic inflammation and hyperactivated inflammatory responses. We show that APOE4 exerts a dominant negative effect to prime astrocytes toward a pro-inflammatory state that is pharmacologically reversible by TAGLN3 supplementation. We further confirm that TAGLN3 is downregulated in the brain of patients with sAD. Our findings highlight the APOE-TAGLN3-NF-κB axis regulating neuroinflammation in human astrocytes and reveal TAGLN3 as a molecular target to modulate neuroinflammation, as well as a potential biomarker for AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Apolipoproteínas E/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Alzheimer/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Astrócitos/metabolismo , Humanos , Inflamação/metabolismo , NF-kappa B/metabolismo
13.
Biochem Soc Trans ; 39(5): 1441-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21936830

RESUMO

It is now clear that NSPs (neutrophil serine proteases), including elastase, Pr3 (proteinase 3) and CatG (cathepsin G) are major pathogenic determinants in chronic inflammatory disorders of the lungs. Two unglycosylated natural protease inhibitors, SLPI (secretory leucocyte protease inhibitor) and elafin, and its precursor trappin-2 that are found in the lungs, have therapeutic potential for reducing the protease-induced inflammatory response. This review examines the multifaceted roles of SLPI and elafin/trappin-2 in the context of their possible use as inhaled drugs for treating chronic lung diseases such as CF (cystic fibrosis) and COPD (chronic obstructive pulmonary disease).


Assuntos
Elafina/metabolismo , Inflamação/enzimologia , Pneumopatias/enzimologia , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/metabolismo , Aerossóis , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Antifúngicos/metabolismo , Antifúngicos/uso terapêutico , Elafina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Pneumopatias/tratamento farmacológico , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/uso terapêutico , Inibidor Secretado de Peptidases Leucocitárias/uso terapêutico , Inibidores de Serina Proteinase/uso terapêutico , Transglutaminases/metabolismo
14.
J Med Chem ; 63(19): 10705-10725, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32459966

RESUMO

Although matrix metalloproteinases (MMPs) are implicated in the regulation of numerous physiological processes, evidence of their pathological roles have also been obtained in the last decades, making MMPs attractive therapeutic targets for several diseases. Recent discoveries of their involvement in central nervous system (CNS) disorders, and in particular in Alzheimer's disease (AD), have paved the way to consider MMP modulators as promising therapeutic strategies. Over the past few decades, diverse approaches have been undertaken in the design of therapeutic agents targeting MMPs for various purposes, leading, more recently, to encouraging developments. In this article, we will present recent examples of inhibitors ranging from small molecules and peptidomimetics to biologics. We will also discuss the scientific knowledge that has led to the development of emerging tools and techniques to overcome the challenges of selective MMP inhibition.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz/efeitos dos fármacos , Doença de Alzheimer/enzimologia , Sistema Nervoso Central/fisiologia , Sistemas de Liberação de Medicamentos , Humanos , Metaloproteinases da Matriz/metabolismo , Peptidomiméticos
15.
Br J Pharmacol ; 177(9): 1988-2005, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31881553

RESUMO

BACKGROUND AND PURPOSE: We recently identified donecopride as a pleiotropic compound able to inhibit AChE and to activate 5-HT4 receptors. Here, we have assessed the potential therapeutic effects of donecopride in treating Alzheimer's disease (AD). EXPERIMENTAL APPROACH: We used two in vivo animal models of AD, transgenic 5XFAD mice and mice exposed to soluble amyloid-ß peptides and, in vitro, primary cultures of rat hippocampal neurons. Pro-cognitive and anti-amnesic effects were evaluated with novel object recognition, Y-maze, and Morris water maze tests. Amyloid load in mouse brain was measured ex vivo and effects of soluble amyloid-ß peptides on neuronal survival and neurite formation determined in vitro. KEY RESULTS: In vivo, chronic (3 months) administration of donecopride displayed potent anti-amnesic properties in the two mouse models of AD, preserving learning capacities, including working and long-term spatial memories. These behavioural effects were accompanied by decreased amyloid aggregation in the brain of 5XFAD mice and, in cultures of rat hippocampal neurons, reduced tau hyperphosphorylation. In vitro, donecopride increased survival in neuronal cultures exposed to soluble amyloid-ß peptides, improved the neurite network and provided neurotrophic benefits, expressed as the formation of new synapses. CONCLUSIONS AND IMPLICATIONS: Donecopride acts like a Swiss army knife, exhibiting a range of sustainable symptomatic therapeutic effects and potential disease-modifying effects in models of AD. Clinical trials with this promising drug candidate will soon be undertaken to confirm its therapeutic potential in humans.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Compostos de Anilina , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Piperidinas , Ratos
16.
Front Aging Neurosci ; 11: 244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607898

RESUMO

Processing of amyloid beta precursor protein (APP) into amyloid-beta peptide (Aß) by ß-secretase and γ-secretase complex is at the heart of the pathogenesis of Alzheimer's disease (AD). Targeting this proteolytic pathway effectively reduces/prevents pathology and cognitive decline in preclinical experimental models of the disease, but therapeutic strategies based on secretase activity modifying drugs have so far failed in clinical trials. Although this may raise some doubts on the relevance of ß- and γ-secretases as targets, new APP-cleaving enzymes, including meprin-ß, legumain (δ-secretase), rhomboid-like protein-4 (RHBDL4), caspases and membrane-type matrix metalloproteinases (MT-MMPs/η-secretases) have confirmed that APP processing remains a solid mechanism in AD pathophysiology. This review will discuss recent findings on the roles of all these proteinases in the nervous system, and in particular on the roles of MT-MMPs, which are at the crossroads of pathological events involving not only amyloidogenesis, but also inflammation and synaptic dysfunctions. Assessing the potential of these emerging proteinases in the Alzheimer's field opens up new research prospects to improve our knowledge of fundamental mechanisms of the disease and help us establish new therapeutic strategies.

17.
Neurotherapeutics ; 16(4): 1237-1254, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31267473

RESUMO

The low-molecular weight thiol pantethine, known as a hypolipidemic and hypocholesterolemic agent, is the major precursor of co-enzyme A. We have previously shown that pantethine treatment reduces amyloid-ß (Aß)-induced IL-1ß release and alleviates pathological metabolic changes in primary astrocyte cultures. These properties of pantethine prompted us to investigate its potential benefits in vivo in the 5XFAD (Tg) mouse model of Alzheimer's disease (AD).1.5-month-old Tg and wild-type (WT) male mice were submitted to intraperitoneal administration of pantethine or saline control solution for 5.5 months. The effects of such treatments were investigated by performing behavioral tests and evaluating astrogliosis, microgliosis, Αß deposition, and whole genome expression arrays, using RNAs extracted from the mice hippocampi. We observed that long-term pantethine treatment significantly reduced glial reactivity and Αß deposition, and abrogated behavioral alteration in Tg mice. Moreover, the transcriptomic profiles revealed that after pantethine treatment, the expression of genes differentially expressed in Tg mice, and in particular those known to be related to AD, were significantly alleviated. Most of the genes overexpressed in Tg compared to WT were involved in inflammation, complement activation, and phagocytosis and were found repressed upon pantethine treatment. In contrast, pantethine restored the expression of a significant number of genes involved in the regulation of Αß processing and synaptic activities, which were downregulated in Tg mice. Altogether, our data support a beneficial role for long-term pantethine treatment in preserving CNS crucial functions altered by Aß pathogenesis in Tg mice and highlight the potential efficiency of pantethine to alleviate AD pathology.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Modelos Animais de Doenças , Panteteína/análogos & derivados , Agressão/efeitos dos fármacos , Agressão/fisiologia , Doença de Alzheimer/patologia , Animais , Esquema de Medicação , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Panteteína/administração & dosagem , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Fatores de Tempo
18.
FEBS J ; 275(9): 2008-20, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18341586

RESUMO

Trappin-2 (also known as pre-elafin) is an endogenous inhibitor of neutrophil serine proteases and is involved in the control of excess proteolysis, especially in inflammatory events, along with the structurally related secretory leucocyte proteinase inhibitor. Secretory leucocyte proteinase inhibitor has been shown to have antibacterial and antifungal properties, whereas recent data indicate that trappin-2 has antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus. In the present study, we tested the antibacterial properties of trappin-2 towards other respiratory pathogens. We found that trappin-2, at concentrations of 5-20 microm, has significant activity against Klebsiella pneumoniae, Haemophilus influenzae, Streptococcus pneumoniae, Branhamella catarrhalis and the pathogenic fungi Aspergillus fumigatus and Candida albicans, in addition to P. aeruginosa and S. aureus. A similar antimicrobial activity was observed with trappin-2 A62D/M63L, a trappin-2 variant that has lost its antiprotease properties, indicating that trappin-2 exerts its antibacterial effects through mechanisms independent from its intrinsic antiprotease capacity. Furthermore, the antibacterial and antifungal activities of trappin-2 were sensitive to NaCl and heparin, demonstrating that its mechanism of action is most probably dependent on its cationic nature. This enables trappin-2 to interact with the membranes of target organisms and disrupt them, as shown by our scanning electron microscopy analyses. Thus, trappin-2 not only provides an antiprotease shield, but also may play an important role in the innate defense of the human lungs and mucosae against pathogenic microorganisms.


Assuntos
Antibacterianos/metabolismo , Antifúngicos/metabolismo , Elafina/metabolismo , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/metabolismo , Dissulfetos/química , Relação Dose-Resposta a Droga , Elafina/farmacologia , Fibronectinas/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/ultraestrutura , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/ultraestrutura , Heparina/farmacologia , Cinética , Modelos Químicos , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/isolamento & purificação , Cloreto de Sódio/farmacologia
19.
Biochimie ; 90(2): 284-95, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17964057

RESUMO

Elafin and SLPI are low-molecular weight proteins that were first identified as protease inhibitors in mucous fluids including lung secretions, where they help control excessive proteolysis due to neutrophil serine proteases (elastase, proteinase 3 and cathepsin G). Elafin and SLPI are structurally related in that both have a fold with a four-disulfide core or whey acidic protein (WAP) domain responsible for inhibiting proteases. Elafin is derived from a precursor, trappin-2 or pre-elafin, by proteolysis. Trappin-2, which is itself a protease inhibitor, has a unique N-terminal domain that enables it to become cross-linked to extracellular matrix proteins by transglutaminase(s). SLPI and elafin/trappin-2 are attractive candidates as therapeutic molecules for inhibiting neutrophil serine proteases in inflammatory lung diseases. Hence, they have become the WAP proteins most studied over the last decade. This review focuses on recent findings revealing that SLPI and elafin/trappin-2 have many biological functions as diverse as anti-bacterial, anti-fungal, anti-viral, anti-inflammatory and immuno-modulatory functions, in addition to their well-recognized role as protease inhibitors.


Assuntos
Elafina/fisiologia , Inibidor Secretado de Peptidases Leucocitárias/fisiologia , Sequência de Aminoácidos , Fármacos Anti-HIV/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Elafina/química , Elafina/farmacologia , Humanos , Pneumopatias/tratamento farmacológico , Dados de Sequência Molecular , Inibidor Secretado de Peptidases Leucocitárias/química , Inibidor Secretado de Peptidases Leucocitárias/farmacologia , Transglutaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA