Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 133(12)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32393601

RESUMO

Fibrillar adhesions are important structural and adhesive components in fibroblasts, and are required for fibronectin fibrillogenesis. While nascent and focal adhesions are known to respond to mechanical cues, the mechanoresponsive nature of fibrillar adhesions remains unclear. Here, we used ratiometric analysis of paired adhesion components to determine an appropriate fibrillar adhesion marker. We found that active α5ß1-integrin exhibits the most definitive fibrillar adhesion localization compared to other proteins, such as tensin-1, reported to be in fibrillar adhesions. To elucidate the mechanoresponsiveness of fibrillar adhesions, we designed a cost-effective and reproducible technique to fabricate physiologically relevant stiffness gradients on thin polyacrylamide (PA) hydrogels, embedded with fluorescently labelled beads. We generated a correlation curve between bead density and hydrogel stiffness, thus enabling a readout of stiffness without the need for specialized knowhow, such as atomic force microscopy (AFM). We find that stiffness promotes growth of fibrillar adhesions in a tensin-1-dependent manner. Thus, the formation of these extracellular matrix-depositing structures is coupled to the mechanical parameters of the cell environment and may enable cells to fine-tune their matrix environment in response to changing physical conditions.


Assuntos
Fibronectinas , Adesões Focais , Adesão Celular , Citoesqueleto , Matriz Extracelular , Fibroblastos , Hidrogéis
2.
BMC Plant Biol ; 20(1): 154, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272878

RESUMO

BACKGROUND: Phosphate is an essential plant macronutrient required to achieve maximum crop yield. Roots are able to uptake soil phosphate from the immediate root area, thus creating a nutrient depletion zone. Many plants are able to exploit phosphate from beyond this root nutrient depletion zone through symbiotic association with Arbuscular Mycorrhizal Fungi (AMF). Here we characterise the relationship between root architecture, AMF association and low phosphate tolerance in strawberries. The contrasting root architecture in the parental strawberry cultivars 'Redgauntlet' and 'Hapil' was studied through a mapping population of 168 progeny. Low phosphate tolerance and AMF association was quantified for each genotype to allow assessment of the phenotypic and genotypic relationships between traits. RESULTS: A "phosphate scavenging" root phenotype where individuals exhibit a high proportion of surface lateral roots was associated with a reduction in root system size across genotypes. A genetic correlation between "root system size" traits was observed with a network of pleiotropic QTL found to represent five "root system size" traits. By contrast, average root diameter and the distribution of roots appeared to be under two discrete methods of genetic control. A total of 18 QTL were associated with plant traits, 4 of which were associated with solidity that explained 46% of the observed variation. Investigations into the relationship between AMF association and root architecture found that a higher root density was associated with greater AMF colonisation across genotypes. However, no phenotypic correlation or genotypic association was found between low phosphate tolerance and the propensity for AMF association, nor root architectural traits when plants are grown under optimal nutrient conditions. CONCLUSIONS: Understanding the genetic relationships underpinning phosphate capture can inform the breeding of strawberry varieties with better nutrient use efficiency. Solid root systems were associated with greater AMF colonisation. However, low P-tolerance was not phenotypically or genotypically associated with root architecture traits in strawberry plants. Furthermore, a trade-off was observed between root system size and root architecture type, highlighting the energetic costs associated with a "phosphate scavenging" root architecture.


Assuntos
Fragaria/genética , Genótipo , Glomeromycota/fisiologia , Micorrizas/fisiologia , Fosfatos/metabolismo , Fragaria/anatomia & histologia , Fragaria/metabolismo , Fragaria/microbiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Poliploidia
3.
J Exp Bot ; 67(6): 1871-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826217

RESUMO

Rootstock-induced dwarfing of apple scions revolutionized global apple production during the twentieth century, leading to the development of modern intensive orchards. A high root bark percentage (the percentage of the whole root area constituted by root cortex) has previously been associated with rootstock-induced dwarfing in apple. In this study, the root bark percentage was measured in a full-sib family of ungrafted apple rootstocks and found to be under the control of three loci. Two quantitative trait loci (QTLs) for root bark percentage were found to co-localize to the same genomic regions on chromosome 5 and chromosome 11 previously identified as controlling dwarfing, Dw1 and Dw2, respectively. A third QTL was identified on chromosome 13 in a region that has not been previously associated with dwarfing. The development of closely linked sequence-tagged site markers improved the resolution of allelic classes, thereby allowing the detection of dominance and epistatic interactions between loci, with high root bark percentage only occurring in specific allelic combinations. In addition, we report a significant negative correlation between root bark percentage and stem diameter (an indicator of tree vigour), measured on a clonally propagated grafted subset of the mapping population. The demonstrated link between root bark percentage and rootstock-induced dwarfing of the scion leads us to propose a three-locus model that is able to explain levels of dwarfing from the dwarf 'M.27' to the semi-invigorating rootstock 'M.116'. Moreover, we suggest that the QTL on chromosome 13 (Rb3) might be analogous to a third dwarfing QTL, Dw3, which has not previously been identified.


Assuntos
Mapeamento Cromossômico , Loci Gênicos , Malus/crescimento & desenvolvimento , Malus/genética , Modelos Genéticos , Casca de Planta/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Ligação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Caules de Planta/anatomia & histologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA