Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Psychiatry ; 27(12): 4893-4904, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36127428

RESUMO

Excessive fear is a hallmark of anxiety disorders, a major cause of disease burden worldwide. Substantial evidence supports a role of prefrontal cortex-amygdala circuits in the regulation of fear and anxiety, but the molecular mechanisms that regulate their activity remain poorly understood. Here, we show that downregulation of the histone methyltransferase PRDM2 in the dorsomedial prefrontal cortex enhances fear expression by modulating fear memory consolidation. We further show that Prdm2 knock-down (KD) in neurons that project from the dorsomedial prefrontal cortex to the basolateral amygdala (dmPFC-BLA) promotes increased fear expression. Prdm2 KD in the dmPFC-BLA circuit also resulted in increased expression of genes involved in synaptogenesis, suggesting that Prdm2 KD modulates consolidation of conditioned fear by modifying synaptic strength at dmPFC-BLA projection targets. Consistent with an enhanced synaptic efficacy, we found that dmPFC Prdm2 KD increased glutamatergic release probability in the BLA and increased the activity of BLA neurons in response to fear-associated cues. Together, our findings provide a new molecular mechanism for excessive fear responses, wherein PRDM2 modulates the dmPFC -BLA circuit through specific transcriptomic changes.


Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Pré-Frontal/metabolismo , Medo/fisiologia , Epigênese Genética
2.
Alcohol Alcohol ; 56(2): 127-138, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33479741

RESUMO

AIMS: Despite a general decline in tobacco use in the last decades, the prevalence of tobacco smoking in individuals with alcohol use disorder (AUD) remains substantial (45-50%). Importantly, the co-use of both substances potentiates the adverse effects, making it a significant public health problem. Substantial evidence suggests that AUD and Tobacco use disorder (TUD) may share common mechanisms. Targeting these mechanisms may therefore provide more effective therapy. Numerous studies describe a potential role of the endogenous opioid system in both AUD and TUD. Reviewing this literature, we aim to evaluate the efficacy of molecules that target the opioid system as promising therapeutic interventions for treating alcohol and tobacco co-use disorders. METHODS: We provide a synthesis of the current epidemiological knowledge of alcohol and tobacco co-use disorders. We evaluate clinical and preclinical research that focuses on the regulation of the endogenous opioid system in alcohol, nicotine, and their interactions. RESULTS: The epidemiological data confirm that smoking stimulates heavy drinking and facilitates alcohol craving. Pharmacological findings suggest that treatments that are efficacious in the dual addiction provide a beneficial treatment outcome in comorbid AUD and TUD. In this regard, MOP, DOP and NOP-receptor antagonists show promising results, while the findings prompt caution when considering KOP-receptor antagonists as a treatment option in alcohol and tobacco co-use disorders. CONCLUSIONS: Existing literature suggests a role of the opioid system in sustaining the high comorbidity rates of AUD and TUD. Molecules targeting opioid receptors may therefore represent promising therapeutic interventions in 'heavy drinking smokers.'


Assuntos
Alcoolismo/tratamento farmacológico , Alcoolismo/epidemiologia , Terapia de Alvo Molecular , Antagonistas de Entorpecentes/uso terapêutico , Receptores Opioides/uso terapêutico , Tabagismo/epidemiologia , Animais , Comorbidade , Etanol/efeitos adversos , Humanos , Camundongos , Nicotina/efeitos adversos , Ratos
3.
Addict Biol ; 26(5): e13009, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33565224

RESUMO

Comorbidity between alcohol use and anxiety disorders is associated with more severe symptoms and poorer treatment outcomes than either of the conditions alone. There is a well-known link between stress and the development of these disorders, with post-traumatic stress disorder as a prototypic example. Post-traumatic stress disorder can arise as a consequence of experiencing traumatic events firsthand and also after witnessing them. Here, we used a model of social defeat and witness stress in rats, to study shared mechanisms of stress-induced anxiety-like behavior and escalated alcohol self-administration. Similar to what is observed clinically, we found considerable individual differences in susceptibility and resilience to the stress. Both among defeated and witness rats, we found a subpopulation in which exposure was followed by emergence of increased anxiety-like behavior and escalation of alcohol self-administration. We then profiled gene expression in tissue from the amygdala, a key brain region in the regulation of stress, alcohol use, and anxiety disorders. When comparing "comorbid" and resilient socially defeated rats, we identified a strong upregulation of vasopressin and oxytocin, and this correlated positively with the magnitude of the alcohol self-administration and anxiety-like behavior. A similar trend was observed in comorbid witness rats. Together, our findings provide novel insights into molecular mechanisms underpinning the comorbidity of escalated alcohol self-administration and anxiety-like behavior.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Estresse Psicológico/metabolismo , Animais , Comportamento Animal , Etanol/metabolismo , Masculino , Ocitocina/metabolismo , Ratos , Autoadministração , Comportamento Social , Vasopressinas/metabolismo
4.
Addict Biol ; 26(1): e12816, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373129

RESUMO

Epigenetic enzymes oversee long-term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol-dependent rats compared with controls. Follow-up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region-specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol-dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol-dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]-sequencing) analysis showed that alcohol-induced changes in H3K27me3 were significantly enriched at genes in the IL-6 signaling pathway, consistent with the well-characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL-6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B-mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.


Assuntos
Alcoolismo/genética , Histona Desmetilases com o Domínio Jumonji/genética , Animais , Células Cultivadas , Epigênese Genética , Etanol/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo , Ratos , Transdução de Sinais , Regulação para Cima
6.
J Neurosci ; 36(50): 12611-12623, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27810934

RESUMO

PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone and is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes. Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety, but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγNestinCre), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (WT), but not in PPARγNestinCre knock-out (KO) mice. Using c-Fos immunohistochemistry, we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala (AMY) and the hippocampus (HIPP) of PPARγNestinCre KO mice compared with WT mice. No differences were found between WT and KO mice in hypothalamic regions responsible for hormonal response to stress or in blood corticosterone levels. Microinjection of pioglitazone into the AMY, but not into the HIPP, abolished the anxiogenic response elicited by acute stress. Results also showed that, in both regions, PPARγ colocalizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response and that the AMY is a key substrate for the anxiolytic effect of PPARγ. SIGNIFICANCE STATEMENT: Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) is a classical target for antidiabetic therapies with thiazolidinedione compounds. PPARγ agonists such as rosiglitazone and pioglitazone are in clinical use for the treatment of insulin resistance. PPARγ has recently attracted attention for its involvement in the regulation of CNS immune response and functions. Here, we demonstrate that neuronal PPARγ activation prevented the negative emotional effects of stress and exerted anxiolytic actions without influencing hypothalamic-pituitary-adrenal axis function. Conversely, pharmacological blockade or genetic deletion of PPARγ enhanced anxiogenic responses and increased vulnerability to stress. These effects appear to be controlled by PPARγ neuronal-mediated mechanisms in the amygdala.


Assuntos
Tonsila do Cerebelo/fisiologia , Ansiedade/genética , Ansiedade/psicologia , Emoções/fisiologia , PPAR gama/genética , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Anilidas/farmacologia , Animais , Corticosterona/sangue , Comportamento Exploratório/efeitos dos fármacos , Glutamato Descarboxilase/genética , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Microinjeções , Neurônios/efeitos dos fármacos , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Pioglitazona , Tiazolidinedionas/administração & dosagem , Tiazolidinedionas/farmacologia
7.
Addict Biol ; 22(5): 1279-1288, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27273552

RESUMO

Proinflammatory activity has been postulated to play a role in addictive processes and stress responses, but the underlying mechanisms remain largely unknown. Here, we examined the role of interleukin 1 (IL-1) and tumor necrosis factor-α (TNF-α) in regulation of voluntary alcohol consumption, alcohol reward and stress-induced drinking. Mice with a deletion of the IL-1 receptor I gene (IL-1RI KO) exhibited modestly decreased alcohol consumption. However, IL-1RI deletion affected neither the rewarding properties of alcohol, measured by conditioned place preference (CPP), nor stress-induced drinking induced by social defeat stress. TNF-α signaling can compensate for phenotypic consequences of IL1-RI deletion. We therefore hypothesized that double deletion of both IL-1RI and TNF-1 receptors (TNF-1R) may reveal the role of these pathways in regulation of alcohol intake. Double KOs consumed significantly less alcohol than control mice over a range of alcohol concentrations. The combined deletion of TNF-1R and IL-1RI did not influence alcohol reward, but did prevent increased alcohol consumption resulting from exposure to repeated bouts of social defeat stress. Taken together, these data indicate that IL-1RI and TNF-1R contribute to regulation of stress-induced, negatively reinforced drinking perhaps through overlapping signaling events downstream of these receptors, while leaving rewarding properties of alcohol largely unaffected.


Assuntos
Consumo de Bebidas Alcoólicas/imunologia , Comportamento Animal , Interleucina-1/imunologia , Receptores Tipo I de Interleucina-1/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Estresse Psicológico/imunologia , Fator de Necrose Tumoral alfa/imunologia , Consumo de Bebidas Alcoólicas/genética , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Condicionamento Clássico , Etanol/administração & dosagem , Inflamação , Masculino , Camundongos , Camundongos Knockout , Distância Psicológica , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais , Estresse Psicológico/genética
8.
J Neurosci ; 35(15): 6153-64, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878287

RESUMO

Recent studies have suggested an association between alcoholism and DNA methylation, a mechanism that can mediate long-lasting changes in gene transcription. Here, we examined the contribution of DNA methylation to the long-term behavioral and molecular changes induced by a history of alcohol dependence. In search of mechanisms underlying persistent rather than acute dependence-induced neuroadaptations, we studied the role of DNA methylation regulating medial prefrontal cortex (mPFC) gene expression and alcohol-related behaviors in rats 3 weeks into abstinence following alcohol dependence. Postdependent rats showed escalated alcohol intake, which was associated with increased DNA methylation as well as decreased expression of genes encoding synaptic proteins involved in neurotransmitter release in the mPFC. Infusion of the DNA methyltransferase inhibitor RG108 prevented both escalation of alcohol consumption and dependence-induced downregulation of 4 of the 7 transcripts modified in postdependent rats. Specifically, RG108 treatment directly reversed both downregulation of synaptotagmin 2 (Syt2) gene expression and hypermethylation on CpG#5 of its first exon. Lentiviral inhibition of Syt2 expression in the mPFC increased aversion-resistant alcohol drinking, supporting a mechanistic role of Syt2 in compulsive-like behavior. Our findings identified a functional role of DNA methylation in alcohol dependence-like behavioral phenotypes and a candidate gene network that may mediate its effects. Together, these data provide novel evidence for DNA methyltransferases as potential therapeutic targets in alcoholism.


Assuntos
Alcoolismo/patologia , Alcoolismo/fisiopatologia , Metilação de DNA/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Animais , Comportamento de Escolha , Condicionamento Operante , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Etanol/administração & dosagem , Perfilação da Expressão Gênica , Masculino , Metiltransferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ftalimidas/farmacologia , Ratos , Ratos Wistar , Autoadministração , Estatísticas não Paramétricas , Sinaptotagmina II/genética , Sinaptotagmina II/metabolismo , Transdução Genética , Triptofano/análogos & derivados , Triptofano/farmacologia
9.
Alcohol Clin Exp Res ; 40(10): 2199-2207, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27579857

RESUMO

BACKGROUND: Reward and energy homeostasis are both regulated by a network of hypothalamic neuropeptide systems. The melanin-concentrating hormone (MCH) and its MCH-1 receptor (MCH1-R) modulate alcohol intake, but it remains unknown to what extent this reflects actions on energy balance or reward. Here, we evaluated the MCH1-R in regulation of caloric intake and motivation to consume alcohol in states of escalated consumption. METHODS: Rats had intermittent access (IA) to alcohol and were divided into high- and low-drinking groups. Food and alcohol consumption was assessed after administration of an MCH1-R antagonist, GW803430. Next, GW803430 was evaluated on alcohol self-administration in protracted abstinence induced by IA in high-drinking rats. Finally, the effect of GW803430 was assessed on alcohol self-administration in acute withdrawal in rats exposed to alcohol vapor. Gene expression of MCH and MCH1-R was measured in the hypothalamus and nucleus accumbens (NAc) in both acute and protracted abstinence. RESULTS: High-drinking IA rats consumed more calories from alcohol than chow and GW803430 decreased both chow and alcohol intake. In low-drinking rats, only food intake was affected. In protracted abstinence from IA, alcohol self-administration was significantly reduced by pretreatment with GW803430 and gene expression of both MCH and the MCH1-R were dysregulated in hypothalamus and NAc. In contrast, during acute withdrawal from vapor exposure, treatment with GW803430 did not affect alcohol self-administration, and no changes in MCH or MCH1-R gene expression were observed. CONCLUSIONS: Our data suggest a dual role of MCH and the MCH1-R in regulation of alcohol intake, possibly through mechanisms involving caloric intake and reward motivation. A selective suppression of alcohol self-administration during protracted abstinence by GW803430 was observed and accompanied by adaptations in gene expression of MCH and MCH1-R. Selective suppression of escalated consumption renders the MCH1-R an attractive target for treatment of alcohol use disorders.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Ingestão de Energia/fisiologia , Hormônios Hipotalâmicos/fisiologia , Melaninas/fisiologia , Motivação/fisiologia , Hormônios Hipofisários/fisiologia , Receptores de Somatostatina/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Hormônios Hipotalâmicos/biossíntese , Hipotálamo/metabolismo , Masculino , Melaninas/biossíntese , Núcleo Accumbens/metabolismo , Hormônios Hipofisários/biossíntese , Pirimidinonas/farmacologia , Ratos , Receptores de Somatostatina/antagonistas & inibidores , Autoadministração , Tiofenos/farmacologia
10.
Proc Natl Acad Sci U S A ; 110(42): 16963-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082084

RESUMO

Identification of genes influencing complex traits is hampered by genetic heterogeneity, the modest effect size of many alleles, and the likely involvement of rare and uncommon alleles. Etiologic complexity can be simplified in model organisms. By genomic sequencing, linkage analysis, and functional validation, we identified that genetic variation of Grm2, which encodes metabotropic glutamate receptor 2 (mGluR2), alters alcohol preference in animal models. Selectively bred alcohol-preferring (P) rats are homozygous for a Grm2 stop codon (Grm2 *407) that leads to largely uncompensated loss of mGluR2. mGluR2 receptor expression was absent, synaptic glutamate transmission was impaired, and expression of genes involved in synaptic function was altered. Grm2 *407 was linked to increased alcohol consumption and preference in F2 rats generated by intercrossing inbred P and nonpreferring rats. Pharmacologic blockade of mGluR2 escalated alcohol self-administration in Wistar rats, the parental strain of P and nonpreferring rats. The causal role of mGluR2 in altered alcohol preference was further supported by elevated alcohol consumption in Grm2 (-/-) mice. Together, these data point to mGluR2 as an origin of alcohol preference and a potential therapeutic target.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Códon de Terminação , Receptores de Glutamato Metabotrópico , Transmissão Sináptica/genética , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/patologia , Animais , Cruzamentos Genéticos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de Glutamato Metabotrópico/genética , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
11.
J Neurosci ; 34(13): 4581-8, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24672003

RESUMO

Escalation of voluntary alcohol consumption is a hallmark of alcoholism, but its neural substrates remain unknown. In rats, escalation occurs following prolonged exposure to cycles of alcohol intoxication, and is associated with persistent, wide-ranging changes in gene expression within the medial prefrontal cortex (mPFC). Here, we examined whether induction of microRNA (miR) 206 in mPFC contributes to escalated alcohol consumption. Following up on a microarray screen, quantitative real-time reverse transcription PCR (qPCR) confirmed that a history of dependence results in persistent (>3weeks) up-regulation of miR-206 expression in the mPFC, but not in the ventral tegmental area, amygdala, or nucleus accumbens. Viral-mediated overexpression of miR-206 in the mPFC of nondependent rats reproduced the escalation of alcohol self-administration seen following a history of dependence and significantly inhibited BDNF expression. Bioinformatic analysis identified three conserved target sites for miR-206 in the 3'-UTR of the rat BDNF transcript. Accordingly, BDNF was downregulated in post-dependent rats on microarray analysis, and this was confirmed by qPCR. In vitro, BDNF expression was repressed by miR-206 but not miR-9 in a 3'-UTR reporter assay, confirming BDNF as a functional target of miR-206. Mutation analysis showed that repression was dependent on the presence of all three miR-206 target sites in the BDNF 3'-UTR. Inhibition of miR-206 expression in differentiated rat cortical primary neurons significantly increased secreted levels of BDNF. In conclusion, recruitment of miR-206 in the mPFC contributes to escalated alcohol consumption following a history of dependence, with BDNF as a possible mediator of its action.


Assuntos
Consumo de Bebidas Alcoólicas/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Córtex Pré-Frontal/metabolismo , Consumo de Bebidas Alcoólicas/sangue , Álcoois/administração & dosagem , Álcoois/sangue , Análise de Variância , Animais , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , MicroRNAs/genética , Mutação/genética , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Ratos , Ratos Wistar , Autoadministração , Fatores de Tempo , Transdução Genética
12.
Neuropharmacology ; 248: 109866, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364970

RESUMO

The Nociceptin/Orphanin FQ (N/OFQ) peptide and its receptor NOP are highly expressed within several regions of the mesolimbic system, including the ventral tegmental area (VTA). Evidence indicates that the N/OFQ-NOP receptor system is involved in reward processing and historically it has been proposed that activation of NOP receptors attenuates the motivation for substances of abuse. However, recent findings demonstrated that drug self-administration and relapse to drug-seeking are also attenuated after administration of NOP receptor antagonists. Here, to shed light on the mechanisms through which NOP receptor blockers modulate these processes, we utilized ex vivo patch-clamp recordings to investigate the effect of the selective NOP receptor antagonist LY2817412 on VTA dopaminergic (DA) function in male rats. Results showed that, similar to the endogenous NOP receptor agonist N/OFQ, LY2817412 reduced the spontaneous basal firing discharge of VTA DA neurons. Consistently, we found that NOP receptors are expressed both in VTA DA and GABA cells and that LY2817412 slice perfusion increased GABA release onto VTA DA cells. Finally, in the attempt to dissect the role of postsynaptic and presynaptic NOP receptors, we tested the effect of N/OFQ and LY2817412 in the presence of GABA receptors blockers. Results showed that the effect of LY2817412 was abolished following pretreatment with GABABR, but not GABAAR, blockers. Conversely, inhibition of DA neuronal activity by N/OFQ was unaffected by blockade of GABA receptors. Altogether, these results suggest that both NOP receptor agonists and antagonists can decrease VTA DA neuronal activity, but through distinct mechanisms of action. The effect of NOP receptor antagonists occurs through a GABABR-mediated mechanism while NOP receptor agonists seem to act via a direct effect on VTA DA neurons.


Assuntos
Dopamina , Receptores Opioides , Ratos , Masculino , Animais , Receptores Opioides/metabolismo , Área Tegmentar Ventral/metabolismo , Receptor de Nociceptina , Receptores de GABA-B , Nociceptina , Neurônios Dopaminérgicos/metabolismo , Ácido gama-Aminobutírico , Peptídeos Opioides/farmacologia
13.
J Neurosci ; 32(22): 7563-71, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649234

RESUMO

Alcoholism is characterized by a compulsion to seek and ingest alcohol, loss of control over intake, and the emergence of a negative emotional state during abstinence. We hypothesized that sustained activation of neuroendocrine stress systems (e.g., corticosteroid release via the hypothalamic-pituitary-adrenal axis) by alcohol intoxication and withdrawal and consequent alterations in glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) activation drive compulsive alcohol drinking. Our results showed that rats exposed to alcohol vapor to the point of dependence displayed increased alcohol intake, compulsive drinking measured by progressive-ratio responding, and persistent alcohol consumption despite punishment, assessed by adding quinine to the alcohol solution, compared with control rats that were not exposed to alcohol vapor. No group differences were observed in the self-administration of saccharin-sweetened water. Acute alcohol withdrawal was accompanied by downregulated GR mRNA in various stress/reward-related brain regions [i.e., prefrontal cortex, nucleus accumbens (NAc), and bed nucleus of the stria terminalis (BNST)], whereas protracted alcohol abstinence was accompanied by upregulated GR mRNA in the NAc core, ventral BNST, and central nucleus of the amygdala. No significant alterations in MR mRNA levels were found. Chronic GR antagonism with mifepristone (RU38486) prevented the escalation of alcohol intake and compulsive responding induced by chronic, intermittent alcohol vapor exposure. Chronic treatment with mifepristone also blocked escalated alcohol drinking and compulsive responding during protracted abstinence. Thus, the GR system appears to be involved in the development of alcohol dependence and may represent a potential pharmacological target for the treatment of alcoholism.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Encéfalo/metabolismo , Receptores de Glucocorticoides/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Regulação para Cima , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/patologia , Análise de Variância , Animais , Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Comportamento Compulsivo/fisiopatologia , Condicionamento Operante/efeitos dos fármacos , Etanol/administração & dosagem , Antagonistas de Hormônios/uso terapêutico , Masculino , Mifepristona/uso terapêutico , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Esquema de Reforço , Autoadministração , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-36717533

RESUMO

Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.

15.
Sci Adv ; 9(2): eadd8687, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630511

RESUMO

High relapse rate is a key feature of opioid addiction. In humans, abstinence is often voluntary due to negative consequences of opioid seeking. To mimic this human condition, we recently introduced a rat model of incubation of oxycodone craving after electric barrier-induced voluntary abstinence. Incubation of drug craving refers to time-dependent increases in drug seeking after cessation of drug self-administration. Here, we used the activity marker Fos, muscimol-baclofen (GABAa + GABAb receptor agonists) global inactivation, Daun02-selective inactivation of putative relapse-associated neuronal ensembles, and fluorescence-activated cell sorting of Fos-positive cells and quantitative polymerase chain reaction to demonstrate a key role of vSub neuronal ensembles in incubation of oxycodone craving after voluntary abstinence, but not homecage forced abstinence. We also used a longitudinal functional magnetic resonance imaging method and showed that functional connectivity changes in vSub-related circuits predict opioid relapse after abstinence induced by adverse consequences of opioid seeking.

16.
Neuron ; 110(24): 4035-4037, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36549267

RESUMO

In this issue of Neuron, Pomrenze and colleagues1 report a novel mechanism behind sociability deficits in mice during protracted withdrawal from morphine. Dorsal raphe dynorphin neurons terminating in the nucleus accumbens suppress local serotonin release through kappa opioid receptors. These findings likely have important clinical implications.


Assuntos
Solidão , Morfina , Camundongos , Animais , Núcleo Dorsal da Rafe , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo
17.
Transl Psychiatry ; 11(1): 2, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33414398

RESUMO

Alcohol use disorder (AUD) is a widespread disease leading to the deterioration of cognitive and other functions. Mechanisms by which alcohol affects the brain are not fully elucidated. Splicing constitutes a nuclear process of RNA maturation, which results in the formation of the transcriptome. We tested the hypothesis as to whether AUD impairs splicing in the superior frontal cortex (SFC), nucleus accumbens (NA), basolateral amygdala (BLA), and central nucleus of the amygdala (CNA). To evaluate splicing, bam files from STAR alignments were indexed with samtools for use by rMATS software. Computational analysis of affected pathways was performed using Gene Ontology Consortium, Gene Set Enrichment Analysis, and LncRNA Ontology databases. Surprisingly, AUD was associated with limited changes in the transcriptome: expression of 23 genes was altered in SFC, 14 in NA, 102 in BLA, and 57 in CNA. However, strikingly, mis-splicing in AUD was profound: 1421 mis-splicing events were detected in SFC, 394 in NA, 1317 in BLA, and 469 in CNA. To determine the mechanism of mis-splicing, we analyzed the elements of the spliceosome: small nuclear RNAs (snRNAs) and splicing factors. While snRNAs were not affected by alcohol, expression of splicing factor heat shock protein family A (Hsp70) member 6 (HSPA6) was drastically increased in SFC, BLA, and CNA. Also, AUD was accompanied by aberrant expression of long noncoding RNAs (lncRNAs) related to splicing. In summary, alcohol is associated with genome-wide changes in splicing in multiple human brain regions, likely due to dysregulation of splicing factor(s) and/or altered expression of splicing-related lncRNAs.


Assuntos
Alcoolismo , RNA Longo não Codificante , Processamento Alternativo , Humanos , Núcleo Accumbens/metabolismo , Splicing de RNA , RNA Longo não Codificante/metabolismo
18.
Biol Psychiatry ; 89(4): 398-406, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160605

RESUMO

BACKGROUND: Alcohol addiction is characterized by persistent neuroadaptations in brain structures involved in motivation, emotion, and decision making, including the medial prefrontal cortex, the nucleus accumbens, and the amygdala. We previously reported that induction of alcohol dependence was associated with long-term changes in the expression of genes involved in neurotransmitter release. Specifically, Syt1, which plays a key role in neurotransmitter release and neuronal functions, was downregulated. Here, we therefore examined the role of Syt1 in alcohol-associated behaviors in rats. METHODS: We evaluated the effect of Syt1 downregulation using an adeno-associated virus (AAV) containing a short hairpin RNA against Syt1. Cre-dependent Syt1 was also used in combination with an rAAV2 retro-Cre virus to assess circuit-specific effects of Syt1 knockdown (KD). RESULTS: Alcohol-induced downregulation of Syt1 is specific to the prelimbic cortex (PL), and KD of Syt1 in the PL resulted in escalated alcohol consumption, increased motivation to consume alcohol, and increased alcohol drinking despite negative consequences ("compulsivity"). Syt1 KD in the PL altered the excitation/inhibition balance in the basolateral amygdala, while the nucleus accumbens core was unaffected. Accordingly, a projection-specific Syt1 KD in the PL-basolateral amygdala projection was sufficient to increase compulsive alcohol drinking, while a KD of Syt1 restricted to PL-nucleus accumbens core projecting neurons had no effect on tested alcohol-related behaviors. CONCLUSIONS: Together, these data suggest that dysregulation of Syt1 is an important mechanism in long-term neuroadaptations observed after a history of alcohol dependence, and that Syt1 regulates alcohol-related behaviors in part by affecting a PL-basolateral amygdala brain circuit.


Assuntos
Córtex Pré-Frontal , Sinaptotagmina I , Tonsila do Cerebelo , Animais , Regulação para Baixo , Etanol , Núcleo Accumbens , Ratos , Sinaptotagmina I/genética
19.
Sci Adv ; 7(34)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34407947

RESUMO

Alcohol intake remains controlled in a majority of users but becomes "compulsive," i.e., continues despite adverse consequences, in a minority who develop alcohol addiction. Here, using a footshock-punished alcohol self-administration procedure, we screened a large population of outbred rats to identify those showing compulsivity operationalized as punishment-resistant self-administration. Using unsupervised clustering, we found that this behavior emerged as a stable trait in a subpopulation of rats and was associated with activity of a brain network that included central nucleus of the amygdala (CeA). Activity of PKCδ+ inhibitory neurons in the lateral subdivision of CeA (CeL) accounted for ~75% of variance in punishment-resistant alcohol taking. Activity-dependent tagging, followed by chemogenetic inhibition of neurons activated during punishment-resistant self-administration, suppressed alcohol taking, as did a virally mediated shRNA knockdown of PKCδ in CeA. These findings identify a previously unknown mechanism for a core element of alcohol addiction and point to a novel candidate therapeutic target.

20.
Neuropharmacology ; 55(7): 1199-211, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18713641

RESUMO

Exposure to ethanol early in life can have long-lasting implications on brain function and drug of abuse response later in life. The present study investigated in rats, the long-term consequences of pre- and postnatal (early life) ethanol exposure on drug consumption/reward and the molecular targets potentially associated with these behavioral alterations. Since a relationship has been demonstrated between heightened drugs intake and susceptibility to drugs-induced locomotor activity/sensitization, anxiolysis, we tested these behavioral responses, depending on the drug, in control and early life ethanol-exposed animals. Our results show that progeny exposed to early life ethanol displayed increased consumption of ethanol solutions and increased sensitivity to cocaine rewarding effects assessed in the conditioned place preference test. Offspring exposed to ethanol were more sensitive to the anxiolytic effect of ethanol and the increased sensitivity could, at least in part, explain the alteration in the consumption of ethanol for its anxiolytic effects. In addition, the sensitivity to hypothermic effects of ethanol and ethanol metabolism were not altered by early life ethanol exposure. The sensitization to cocaine (20 mg/kg) and to amphetamine (1.2 mg/kg) was increased after early life ethanol exposure and, could partly explain, an increase in the rewarding properties of psychostimulants. Gene expression analysis revealed that expression of a large number of genes was altered in brain regions involved in the reinforcing effects of drugs of abuse. Dopaminergic receptors and transporter binding sites were also down-regulated in the striatum of ethanol-exposed offspring. Such long-term neurochemical alterations in transmitter systems and in the behavioral responses to ethanol and other drugs of abuse may confer an increased liability for addiction in exposed offspring.


Assuntos
Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Expressão Gênica/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/psicologia , Anfetamina/farmacologia , Animais , Ansiedade/psicologia , Aprendizagem da Esquiva/efeitos dos fármacos , Depressores do Sistema Nervoso Central/sangue , Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Etanol/sangue , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Polimorfismo Genético/efeitos dos fármacos , Polimorfismo Genético/genética , Gravidez , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/biossíntese , Receptor CB1 de Canabinoide/genética , Receptores de Dopamina D1/biossíntese , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/biossíntese , Receptores de Dopamina D2/genética , Receptores de GABA-A/biossíntese , Receptores de GABA-A/genética , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA