Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 19(11): 1590-1602, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33107551

RESUMO

Studies have previously shown that anthracene and naphthalene derivatives serve as compounds for trapping and chemically generating singlet molecular oxygen [O2(1Δg)], respectively. Simple and efficient synthetic routes to anthracene and naphthalene derivatives are needed, for improved capture and release of O2(1Δg) in cellular environments. Because of this need, we have synthesized a dihydroxypropyl amide naphthlene endoperoxide as a O2(1Δg) donor, as well as five anthracene derivatives as O2(1Δg) acceptor. The anthracene derivatives bear dihydroxypropyl amide, ester, and sulfonate ion end groups connected to 9,10-positions by way of unsaturated (vinyl) and saturated (ethyl) bridging groups. Heck reactions were found to yield these six compounds in easy-to-carry out 3-step reactions in yields of 50-76%. Preliminary results point to the potential of the anthracene compounds to serve as O2(1Δg) acceptors and would be amenable for future use in biological systems to expand the understanding of O2(1Δg) in biochemistry.


Assuntos
Antracenos/farmacologia , Naftalenos/farmacologia , Oxigênio Singlete/metabolismo , Antracenos/síntese química , Antracenos/química , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Imagem Óptica , Oxigênio Singlete/química
2.
Biochim Biophys Acta ; 1802(5): 462-71, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20097285

RESUMO

Mutations in the gene encoding cytosolic Cu,Zn-superoxide dismutase (SOD1) have been linked to familial amyotrophic lateral sclerosis (FALS). However the molecular mechanisms of motor neuron death are multi-factorial and remain unclear. Here we examined DNA damage, p53 activity and apoptosis in SH-SY5Y human neuroblastoma cells transfected to achieve low-level expression of either wild-type or mutant Gly(93)-->Ala (G93A) SOD1, typical of FALS. DNA damage was investigated by evaluating the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and DNA strand breaks. Significantly higher levels of DNA damage, increased p53 activity, and a greater percentage of apoptotic cells were observed in SH-SY5Y cells transfected with G93A SOD1 when compared to cells overexpressing wild-type SOD1 and untransfected cells. Western blot, FACS, and confocal microscopy analysis demonstrated that G93A SOD1 is present in the nucleus in association with DNA. Nuclear G93A SOD1 has identical superoxide dismutase activity but displays increased peroxidase activity when compared to wild-type SOD1. These results indicate that the G93A mutant SOD1 association with DNA might induce DNA damage and trigger the apoptotic response by activating p53. This toxic activity of mutant SOD1 in the nucleus may play an important role in the complex mechanisms associated with motor neuron death observed in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Apoptose , Cromatina/metabolismo , Dano ao DNA , Neuroblastoma/metabolismo , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Esclerose Lateral Amiotrófica/patologia , Núcleo Celular/enzimologia , Núcleo Celular/patologia , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Técnicas Imunoenzimáticas , Peroxidação de Lipídeos , Superóxido Dismutase-1 , Células Tumorais Cultivadas
3.
Analyst ; 133(11): 1605-10, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18936840

RESUMO

The uptake of ascorbate by neuroblastoma cells using a ruthenium oxide hexacyanoferrate (RuOHCF)-modified carbon fiber disc (CFD) microelectrode (r = 14.5 microm) was investigated. By use of the proposed electrochemical sensor the amperometric determination of ascorbate was performed at 0.0 V in minimum essential medium (MEM, pH = 7.2) with a limit of detection of 25 micromol L(-1). Under the optimum experimental conditions, no interference from MEM constituents and reduced glutathione (used to prevent the oxidation of ascorbate during the experiments) was noticed. The stability of the RuOHCF-modified electrode response was studied by measuring the sensitivity over an extended period of time (120 h), a decrease of around 10% being noticed at the end of the experiment. The rate of ascorbate uptake by control human neuroblastoma SH-SY5Y cells, and cells transfected with wild-type Cu,Zn-superoxide dismutase (SOD WT) or with a mutant typical of familial amyotrophic lateral sclerosis (SOD G93A), was in agreement with the level of oxidative stress in these cells. The usefulness of the RuOHCF-modified microelectrode for in vivo monitoring of ascorbate inside neuroblastoma cells was also demonstrated.


Assuntos
Ácido Ascórbico/metabolismo , Neuroblastoma/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Eletroquímica/métodos , Ferrocianetos , Humanos , Microeletrodos , Oxirredução , Rutênio
4.
Mutat Res ; 544(2-3): 115-27, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14644314

RESUMO

Modification of cellular DNA upon exposure to reactive oxygen and nitrogen species is the likely initial event involved in the induction of the mutagenic and lethal effects of various oxidative stress agents. Evidence has been accumulated for the significant implication of singlet oxygen (1O(2)), generated as the result of UVA activation of endogenous photosensitizers as porphyrins and flavins. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo) has been shown to be the exclusive product of the reaction of 1O(2) with the guanine moiety of cellular DNA, in contrast to the hydroxyl radical, which reacts almost indifferently with all the nucleobases and the sugar moiety of DNA. Furthermore 8-oxodGuo is also produced by other oxidants and can be used as an ubiquitous biomarker of DNA oxidation but can not be a specific marker of any particular species. The role of DNA etheno adducts in mutagenic and carcinogenic processes triggered by known occupational and environmental carcinogens has also been studied. Much interest in etheno adducts resulted from the detection of increased levels of 1,N(6)-etheno-2'-deoxyadenosine and 3,N(4)-etheno-2'-deoxycytidine in DNA from human, rat and mouse tissues under pathophysiological conditions associated with oxidative stress. A method involving on-line HPLC with electrospray tandem mass spectrometry detection has been developed for the analysis of 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilondGuo) in DNA. This methodology permits direct quantification of 20 fmol (7.4 adducts/10(8) dGuo) of the etheno adduct from approximately 350 microg of crude DNA hydrolysates. This method provides the first evidence of the occurrence of 1,N(2)-epsilondGuo as a basal endogenous lesion and may be utilized to better assess the biological consequences of etheno DNA damage under normal and pathological conditions. This work addresses the importance of isotope labeling associated with mass spectrometry technique for biomolecule damage studies.


Assuntos
Alquilantes/toxicidade , Carcinógenos/toxicidade , Dano ao DNA/genética , Neoplasias/genética , Espécies Reativas de Oxigênio/toxicidade , Adutos de DNA , Humanos , Peroxidação de Lipídeos , Mutagênicos/toxicidade , Neoplasias/induzido quimicamente , Estresse Oxidativo , Oxigênio Singlete/toxicidade
5.
Aging Cell ; 7(4): 552-60, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18505478

RESUMO

Caloric restriction is the most effective non-genetic intervention to enhance lifespan known to date. A major research interest has been the development of therapeutic strategies capable of promoting the beneficial results of this dietary regimen. In this sense, we propose that compounds that decrease the efficiency of energy conversion, such as mitochondrial uncouplers, can be caloric restriction mimetics. Treatment of mice with low doses of the protonophore 2,4-dinitrophenol promotes enhanced tissue respiratory rates, improved serological glucose, triglyceride and insulin levels, decrease of reactive oxygen species levels and tissue DNA and protein oxidation, as well as reduced body weight. Importantly, 2,4-dinitrophenol-treated animals also presented enhanced longevity. Our results demonstrate that mild mitochondrial uncoupling is a highly effective in vivo antioxidant strategy, and describe the first therapeutic intervention capable of effectively reproducing the physiological, metabolic and lifespan effects of caloric restriction in healthy mammals.


Assuntos
2,4-Dinitrofenol/farmacologia , Metabolismo Energético/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Desacopladores/farmacologia , Animais , Glicemia/metabolismo , Respiração Celular/efeitos dos fármacos , Feminino , Insulina/sangue , Camundongos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA