Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791542

RESUMO

Molecularly imprinted polymers (MIPs) are established artificial molecular recognition platforms with tailored selectivity towards a target molecule, whose synthesis and functionality are highly influenced by the nature of the solvent employed in their synthesis. Steps towards the "greenification" of molecular imprinting technology (MIT) has already been initiated by the elaboration of green MIT principles; developing MIPs in a solvent-free environment may not only offer an eco-friendly alternative, but could also significantly influence the affinity and expected selectivity of the resulting binding sites. In the current study the first solvent-free mechanochemical synthesis of MIPs via liquid-assisted grinding (LAG) is reported. The successful synthesis of the imprinted polymer was functionally demonstrated by measuring its template rebinding capacity and the selectivity of the molecular recognition process in comparison with the ones obtained by the conventional, non-covalent molecular imprinting process in liquid media. The results demonstrated similar binding capacities towards the template molecule and superior chemoselectivity compared to the solution-based MIP synthesis method. The adoption of green chemistry principles with all their inherent advantages in the synthesis of MIPs may not only be able to alleviate the potential environmental and health concerns associated with their analytical (e.g., selective adsorbents) and biomedical (e.g., drug carriers or reservoirs) applications, but might also offer a conceptual change in molecular imprinting technology.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Polímeros Molecularmente Impressos/química , Polímeros Molecularmente Impressos/síntese química , Impressão Molecular/métodos , Técnicas de Síntese em Fase Sólida/métodos , Polímeros/química , Polímeros/síntese química , Solventes/química
2.
Materials (Basel) ; 17(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38541384

RESUMO

Hyaluronic acid (HA) has attracted much attention in tumor-targeted drug delivery due to its ability to specifically bind to the CD44 cellular receptor, which is widely expressed on cancer cells. We present HA-capped magnetic nanoparticles (HA-MNPs) obtained via the co-precipitation method, followed by the electrostatic adsorption of HA onto the nanoparticles' surfaces. A theoretical study carried out with the PM3 method evidenced a dipole moment of 3.34 D and negatively charged atom groups able to participate in interactions with nanoparticle surface cations and surrounding water molecules. The ATR-FTIR spectrum evidenced the hyaluronic acid binding to the surface of the ferrophase, ensuring colloidal stability in the water dispersion. To verify the success of the synthesis and stabilization, HA-MNPs were also characterized using other investigation techniques: TEM, EDS, XRD, DSC, TG, NTA, and VSM. The results showed that the HA-MNPs had a mean physical size of 9.05 nm (TEM investigation), a crystallite dimension of about 8.35 nm (XRD investigation), and a magnetic core diameter of about 8.31 nm (VSM investigation). The HA-MNPs exhibited superparamagnetic behavior, with the magnetization curve showing saturation at a high magnetic field and a very small coercive field, corresponding to the net dominance of single-domain magnetic nanoparticles that were not aggregated with reversible magnetizability. These features satisfy the requirement for magnetic nanoparticles with a small size and good dispersibility for long-term stability. We performed some preliminary tests regarding the nanotoxicity in the environment, and some chromosomal aberrations were found to be induced in corn root meristems, especially in the anaphase and metaphase of mitotic cells. Due to their properties, HA-MNPs also seem to be suitable for use in the biomedical field.

3.
Animals (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929396

RESUMO

The purpose of this study was to analyze the ultrastructure of the testes of sexually immature calves and reproductive bulls of the Polish Holstein-Friesian Black-and-White breed. Utilizing TEM, this study identified three distinct stages of seminiferous tubule development in calves, characterized by varying shapes, distributions, and arrangements of individual cells. In immature animals, early developing spermatocytes, prespermatogonia, and pre-Sertoli cells were observed within the seminiferous tubules. In sexually mature bulls, all cells of the spermatogenic series were observed, situated on a thin, multilayered basal lamina, which forms characteristic undulations. An abundant smooth endoplasmic reticulum was observed in the cytoplasm of spermatogonia in both groups of animals, forming characteristic membranous swirls. In adult bulls, spermatogonia maintain contact with each other through numerous cytoplasmic bridges and cell connections, forming small spaces with visible microvilli between them. The ultrastructural analysis facilitated the identification of morphological changes occurring during the maturation of pre-Sertoli cells, transitioning from a large euchromatic nucleus to a nucleus in which the formation of characteristic vesicles and tubules could be observed. It should also be emphasized that two types of Sertoli cells, namely dark and light electron-dense cells, can be found in cattle. These cells differ from each other, indicating that they may perform different functions. The widespread recognition of the presence of two types of Sertoli cells in cattle will undoubtedly contribute to a better understanding of the processes occurring within the testes and provide a basis for further research in this area.

4.
Diagnostics (Basel) ; 14(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396469

RESUMO

COVID-19-associated rhino-orbital mucormycosis has become a new clinical entity. This study's aim was to evaluate the histopathological and ultramicroscopic morphological aspects of this fungal infection. This was an observational retrospective study on eight patients from three tertiary centers in Romania. The tissue samples collected during functional endoscopic sinus surgery were studied through histopathological examination, scanning electron microscopy, and transmission electron microscopy. In the histopathological examination, the morphological aspects characteristic of mucormycosis in all cases were identified: wide aseptate hyphae with right-angle ramifications, which invade blood vessels. One case presented perineural invasion into the perineural lymphatics. And in another case, mucormycosis-aspergillosis fungal coinfection was identified. Through scanning electron microscopy, long hyphae on the surface of the mucosa surrounded by cells belonging to the local immune system were identified in all samples, and bacterial biofilms were identified in half of the samples. Through transmission electron microscopy, aseptate hyphae and bacterial elements were identified in the majority of the samples. Rhino-orbital-cerebral mucormycosis associated with COVID-19 produces nasal sinus dysbiosis, which favors the appearance of bacterial biofilms. The way in which the infection develops depends on the interaction of the fungi with cells of the immune system.

5.
Dalton Trans ; 53(20): 8563-8575, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38682235

RESUMO

The Oxygen Evolution Reaction (OER) is crucial in various processes such as hydrogen production via water splitting. Several electrocatalysts, including metal oxides, have been evaluated to enhance the reaction efficiency. Zeolitic Imidazolate Framework-67 (ZIF-67) has been employed as a precursor to produce Co3O4, showing high OER activity. Additionally, the formation of composites with carbon-based materials improves the activity of these materials. Thus, this work focuses on synthesizing ZIF-67 and commercial activated carbon (AC) composites, which were used as precursors to obtain Co3O4/C electrocatalysts by calculating ZIF-67/CX (X = 10, 30, and 50, the mass percentage of AC). The obtained materials were thoroughly characterized by employing X-ray powder diffraction (XRD), confirming the cobalt oxide structure with a sphere-like morphology as observed in the TEM images. The presence of oxygen vacancies was confirmed by infrared spectroscopy and EPR measurements. The electrocatalytic performance in the OER was investigated by linear sweep voltammetry (LSV), which revealed an overpotential of 325 mV at 10 mA cm-2 and a Tafel slope value of 65.32 mV dec-1 for Co3O4/C10, superior in activity to several previously reported studies in the literature and electrochemical stability of up to 8 hours. The reduced value of charge transfer resistance, high double-layer capacitance, and the presence of Co3+ ions justify the superior performance of the Co3O4/C10 electrocatalyst.

6.
Biosensors (Basel) ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38248396

RESUMO

Water samples from two naturally hypersaline lakes, renowned for their balneotherapeutic properties, were investigated through a pilot SERS monitoring program. Nanotechnology-based techniques were employed to periodically measure the ultra-sensitive SERS molecular characteristics of the raw water-bearing microbial community and the inorganic content. Employing the Pearson correlation coefficient revealed a robust linear relationship between electrical conductivity and pH and Raman and SERS spectral data of water samples, highlighting the interplay complexity of Raman/SERS signals and physicochemical parameters within each lake. The SERS data obtained from raw waters with AgNPs exhibited a dominant, reproducible SERS feature resembling adsorbed ß-carotene at submicromole concentration, which could be related to the cyanobacteria-AgNPs interface and supported by TEM analyses. Notably, spurious SERS sampling cases showed molecular traces attributed to additional metabolites, suggesting multiplexed SERS signatures. The conducted PCA demonstrated observable differences in the ß-carotene SERS band intensities between the two lakes, signifying potential variations in picoplankton abundance and composition or environmental influences. Moreover, the study examined variations in the SERS intensity ratio I245/I1512, related to the balance between inorganic (Cl--induced AgNPs aggregation) and organic (cyanobacteria population) balance, in correlation with the electrical conductivity. These findings signify the potential of SERS data for monitoring variations in microorganism concentration, clearly dependent on ion concentration and nutrient dynamics in raw, hypersaline water bodies.


Assuntos
Lagos , beta Caroteno , Água , Condutividade Elétrica , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA