Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
2.
J Radiol Prot ; 33(1): R1-16, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23296029

RESUMO

The assessment and management of risks associated with exposures to ionising radiation are defined by the general radiological protection system, proposed by the International Commission on Radiological Protection (ICRP). This system is regarded by a large majority of users as a robust system although there are a number of dissenting voices, claiming that it is not suitable for estimating the risks resulting from internal exposures. One of the specific issues of internal exposure involves short-range radiations such as Auger and beta particles. Auger- and beta-emitting radionuclides can be distributed preferentially in certain tissue structures and even in certain cellular organelles, according to their chemical nature and the vector with which they are associated. Given the limited range of the low-energy electrons in biological matter, this heterogeneous distribution can generate highly localised energy depositions and exacerbate radiotoxic responses at cellular level. These particularities in energy distribution and cellular responses are not taken into account by the conventional methods for the assessment of risk.Alternative systems have been proposed, based on dosimetry conducted at the cellular or even molecular level, whose purpose is to determine the energy deposition occurring within the DNA molecule. However, calculation of absorbed doses at the molecular level is not sufficient to ensure a better assessment of the risks incurred. Favouring such a microdosimetric approach for the risk assessments would require a comprehensive knowledge of the biological targets of radiation, the dose-response relationships at the various levels of organisation, and the mechanisms leading from cellular energy deposition to the appearance of a health detriment. The required knowledge is not fully available today and it is not yet possible to link an intracellular energy deposition to a probability of occurrence of health effects or to use methods based on cellular dosimetry directly.The imperfections of the alternative approaches proposed so far should not discourage efforts. Protection against exposure to Auger and low-energy beta emitters would benefit from mechanistic studies, dedicated to the study of energy depositions of the radionuclides in various cellular structures, but also from radiotoxicological studies to define the relative biological effectiveness of the various Auger emitters used in medicine and of certain low-energy beta emitters, whose behaviour may depend greatly on their chemical form during intake. The scientific expertise, as well as the human and physical resources needed to conduct these studies, is available. They could be now mobilised into international low-dose research programmes, in order to ultimately improve the protection of people exposed to these specific radionuclides.


Assuntos
Exposição Ambiental/análise , Lesões por Radiação/etiologia , Lesões por Radiação/fisiopatologia , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Radioisótopos/efeitos adversos , Medição de Risco/métodos , Animais , Partículas beta , Humanos , Lesões por Radiação/prevenção & controle , Projetos de Pesquisa/tendências , Medição de Risco/tendências
4.
Phys Med ; 97: 25-35, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35339863

RESUMO

Clinical dosimetry in molecular radiotherapy (MRT) is a multi-step procedure, prone to uncertainties at every stage of the dosimetric workflow. These are difficult to assess, especially as some are complex or even impossible to measure experimentally. The DosiTest project was initiated to assess the variability associated with clinical dosimetry, by setting up a 'virtual' multicentric clinical dosimetry trial based on Monte Carlo (MC) modelling. A reference patient model with a realistic geometry and activity input for a specific tracer is considered. Reference absorbed dose rate distribution maps are generated at various time-points from MC modelling, combining precise information on density and activity distributions (voxel wise). Then, centre-specific calibration and patient SPECT/CT datasets are modelled, on which the clinical centres can perform clinical (i.e. image-based) dosimetry. The results of this dosimetric analysis can be benchmarked against the reference dosimetry to assess the variability induced by implementing different clinical dosimetry approaches. The feasibility of DosiTest is presented here for a clinical situation of therapeutic administration of 177Lu-DOTATATE (Lutathera®) peptide receptor radionuclide therapy (PRRT). From a real patient dataset composed of 5 SPECT/CT images and associated calibrations, we generated the reference absorbed dose rate images with GATE. Then, simulated SPECT/CT image generation based on GATE was performed, both for a calibration phantom and virtual patient images. Based on this simulated dataset, image-based dosimetry could be performed, and compared with reference dosimetry. The good agreement, between real and simulated images, and between reference and image-based dosimetry established the proof of concept of DosiTest.


Assuntos
Radiometria , Compostos Radiofarmacêuticos , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons , Radiometria/métodos , Cintilografia
5.
Eur J Nucl Med Mol Imaging ; 38(1): 192-200, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20799035

RESUMO

Many recent publications in nuclear medicine contain data on dosimetric findings for existing and new diagnostic and therapeutic agents. In many of these articles, however, a description of the methodology applied for dosimetry is lacking or important details are omitted. The intention of the EANM Dosimetry Committee is to guide the reader through a series of suggestions for reporting dosimetric approaches. The authors are aware of the large amount of data required to report the way a given clinical dosimetry procedure was implemented. Another aim of this guidance document is to provide comprehensive information for preparing and submitting publications and reports containing data on internal dosimetry. This guidance document also contains a checklist which could be useful for reviewers of manuscripts submitted to scientific journals or for grant applications. In addition, this document could be used to decide which data are useful for a documentation of dosimetry results in individual patient records. This may be of importance when the approval of a new radiopharmaceutical by official bodies such as EMA or FDA is envisaged.


Assuntos
Documentação , Radiometria/métodos , Projetos de Pesquisa , Calibragem , Diagnóstico por Imagem , Câmaras gama , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Neoplasias , Imagens de Fantasmas , Doses de Radiação , Radiometria/instrumentação , Compostos Radiofarmacêuticos
6.
Clin Oncol (R Coll Radiol) ; 33(2): 117-124, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33281018

RESUMO

Molecular radiotherapy is a rapidly developing field with new vector and isotope combinations continually added to market. As with any radiotherapy treatment, it is vital that the absorbed dose and toxicity profile are adequately characterised. Methodologies for absorbed dose calculations for radiopharmaceuticals were generally developed to characterise stochastic effects and not suited to calculations on a patient-specific basis. There has been substantial scientific and technological development within the field of molecular radiotherapy dosimetry to answer this challenge. The development of imaging systems and advanced processing techniques enable the acquisition of accurate measurements of radioactivity within the body. Activity assessment combined with dosimetric models and radiation transport algorithms make individualised absorbed dose calculations not only feasible, but commonplace in a variety of commercially available software packages. The development of dosimetric parameters beyond the absorbed dose has also allowed the possibility to characterise the effect of irradiation by including biological parameters that account for radiation absorbed dose rates, gradients and spatial and temporal energy distribution heterogeneities. Molecular radiotherapy is in an exciting time of its development and the application of dosimetry in this field can only have a positive influence on its continued progression.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Algoritmos , Humanos , Doses de Radiação , Compostos Radiofarmacêuticos , Dosagem Radioterapêutica
7.
EJNMMI Res ; 11(1): 1, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33394212

RESUMO

BACKGROUND: The aim of this study was to compare a commercial dosimetry workstation (PLANET® Dose) and the dosimetry approach (GE Dosimetry Toolkit® and OLINDA/EXM® V1.0) currently used in our department for quantification of the absorbed dose (AD) to organs at risk after peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE. METHODS: An evaluation on phantom was performed to determine the SPECT calibration factor variations over time and to compare the Time Integrated Activity Coefficients (TIACs) obtained with the two approaches. Then, dosimetry was carried out with the two tools in 21 patients with neuroendocrine tumours after the first and second injection of 7.2 ± 0.2 GBq of [177Lu]Lu-DOTA-TATE (40 dosimetry analyses with each software). SPECT/CT images were acquired at 4 h, 24 h, 72 h and 192 h post-injection and were reconstructed using the Xeleris software (General Electric). The liver, spleen and kidneys masses and TIACs were determined using Dosimetry Toolkit® (DTK) and PLANET® Dose. The ADs were calculated using OLINDA/EXM® V1.0 and the Local Deposition Method (LDM) or Dose voxel-Kernel convolution (DK) on PLANET® Dose. RESULTS: With the phantom, the 3D calibration factors showed a slight variation (0.8% and 3.3%) over time, and TIACs of 225.19 h and 217.52 h were obtained with DTK and PLANET® Dose, respectively. In patients, the root mean square deviation value was 8.9% for the organ masses, 8.1% for the TIACs, and 9.1% and 7.8% for the ADs calculated with LDM and DK, respectively. The Lin's concordance correlation coefficient was 0.99 and the Bland-Altman plot analysis estimated that the AD value difference between methods ranged from - 0.75 to 0.49 Gy, from - 0.20 to 0.64 Gy, and from - 0.43 to 1.03 Gy for 95% of the 40 liver, kidneys and spleen dosimetry analyses. The dosimetry method had a minor influence on AD differences compared with the image registration and organ segmentation steps. CONCLUSIONS: The ADs to organs at risk obtained with the new workstation PLANET® Dose are concordant with those calculated with the currently used software and in agreement with the literature. These results validate the use of PLANET® Dose in clinical routine for patient dosimetry after targeted radiotherapy with [177Lu]Lu-DOTA-TATE.

9.
Radiat Res ; 171(6): 657-63, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19580472

RESUMO

A microdosimetric model that makes it possible to consider the numerous biological and physical parameters of cellular alpha-particle irradiation by radiolabeled mAbs was developed. It allows for the calculation of single-hit and multi-hit distributions of specific energy within a cell nucleus or a whole cell in any irradiation configuration. Cells are considered either to be isolated or to be packed in a monolayer or a spheroid. The method of calculating energy deposits is analytical and is based on the continuous-slowing-down approximation. A model of cell survival, calculated from the microdosimetric spectra and the microdosimetric radiosensitivity, z(0), was also developed. The algorithm of calculations was validated by comparison with two general Monte Carlo codes: MCNPX and Geant4. Microdosimetric spectra determined by these three codes showed good agreement for numerous geometrical configurations. The analytical method was far more efficient in terms of calculation time: A gain of more than 1000 was observed when using our model compared with Monte Carlo calculations. Good agreements were also observed with previously published results.


Assuntos
Partículas alfa , Sobrevivência Celular/efeitos da radiação , Células/efeitos da radiação , Modelos Teóricos , Radiometria/métodos , Algoritmos , Membrana Celular/efeitos da radiação , Núcleo Celular/efeitos da radiação , Citoplasma/efeitos da radiação , Método de Monte Carlo , Software , Análise Espectral , Fatores de Tempo
10.
Radiat Res ; 171(6): 664-73, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19580473

RESUMO

A microdosimetric model was used to analyze the results of experimental studies on cells of two lymphoid cell lines (T2 and Ada) irradiated with (213)Bi-radiolabeled antibodies. These antibodies targeted MHC/peptide complexes. The density of target antigen could be modulated by varying the concentration of the peptide loaded onto the cells. This offered the possibility of changing the ratio of specific (from cell-bound antibody) to non-specific (from antibody present in the supernatant) irradiation. For both cell lines, survival plotted as a function of the mean absorbed dose was a decreasing exponential. For the T2 cells, the microdosimetric sensitivity calculated for the whole cell was equal whether the irradiation was non-specific (z(0) = 0.12 +/- 0.02 Gy) or specific (z(0) = 0.12 +/- 0.09 Gy). Similar results were obtained for Ada cells. These results constitute a biological validation of the microdosimetric model. For both cells, the measured cell mortality was greater than the percentage of hit cells calculated with the model at low mean absorbed doses. This observation thus suggests bystander effects. It poses the question of the relevance of the mean absorbed dose to the cell nuclei. A new concept in cellular dosimetry taking into account cytoplasm or membrane irradiation and bystander modeling appears to be needed.


Assuntos
Partículas alfa , Sobrevivência Celular/efeitos da radiação , Células/efeitos da radiação , Modelos Teóricos , Radiometria/métodos , Anticorpos Monoclonais , Bismuto , Morte Celular/efeitos da radiação , Linhagem Celular , Núcleo Celular/efeitos da radiação , Tamanho Celular/efeitos da radiação , Células/metabolismo , Relação Dose-Resposta à Radiação , Antígeno HLA-A2/imunologia , Humanos , Radioisótopos , Timidina/metabolismo , Fatores de Tempo , Trítio
12.
Life Sci Space Res (Amst) ; 16: 38-46, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29475518

RESUMO

Astronauts are exposed to microgravity and chronic irradiation but experimental conditions combining these two factors are difficult to reproduce on earth. We have created an experimental device able to combine chronic irradiation and altered gravity that may be used for cell cultures or plant models in a ground based facility. Irradiation was provided by thorium nitrate powder, conditioned so as to constitute a sealed source that could be placed in an incubator. Cell plates or plant seedlings could be placed in direct contact with the source or at various distances above it. Moreover, a random positioning machine (RPM) could be positioned on the source to simulate microgravity. The activity of the source was established using the Bateman formula. The spectrum of the source, calculated according to the natural decrease of radioactivity and the gamma spectrometry, showed very good adequacy. The experimental fluence was close to the theoretical fluence evaluation, attesting its uniform distribution. A Monte Carlo model of the irradiation device was processed by GATE code. Dosimetry was performed with radiophotoluminescent dosimeters exposed for one month at different locations (x and y axes) in various cell culture conditions. Using the RPM placed on the source, we reached a mean absorbed dose of gamma rays of (0.33 ± 0.17) mSv per day. In conclusion, we have elaborated an innovative device allowing chronic radiation exposure to be combined with altered gravity. Given the limited access to the International Space Station, this device could be useful to researchers interested in the field of space biology.


Assuntos
Astronautas , Meio Ambiente Extraterreno , Raios gama , Plântula/efeitos da radiação , Simulação de Ausência de Peso/métodos , Ausência de Peso , Células Cultivadas , Humanos , Modelos Teóricos , Radiometria
13.
Phys Med Biol ; 52(4): 1013-25, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17264367

RESUMO

Murine models are useful for targeted radiotherapy pre-clinical experiments. These models can help to assess the potential interest of new radiopharmaceuticals. In this study, we developed a voxel-based mouse for dosimetric estimates. A female nude mouse (30 g) was frozen and cut into slices. High-resolution digital photographs were taken directly on the frozen block after each section. Images were segmented manually. Monoenergetic photon or electron sources were simulated using the MCNP4c2 Monte Carlo code for each source organ, in order to give tables of S-factors (in Gy Bq-1 s-1) for all target organs. Results obtained from monoenergetic particles were then used to generate S-factors for several radionuclides of potential interest in targeted radiotherapy. Thirteen source and 25 target regions were considered in this study. For each source region, 16 photon and 16 electron energies were simulated. Absorbed fractions, specific absorbed fractions and S-factors were calculated for 16 radionuclides of interest for targeted radiotherapy. The results obtained generally agree well with data published previously. For electron energies ranging from 0.1 to 2.5 MeV, the self-absorbed fraction varies from 0.98 to 0.376 for the liver, and from 0.89 to 0.04 for the thyroid. Electrons cannot be considered as 'non-penetrating' radiation for energies above 0.5 MeV for mouse organs. This observation can be generalized to radionuclides: for example, the beta self-absorbed fraction for the thyroid was 0.616 for I-131; absorbed fractions for Y-90 for left kidney-to-left kidney and for left kidney-to-spleen were 0.486 and 0.058, respectively. Our voxel-based mouse allowed us to generate a dosimetric database for use in preclinical targeted radiotherapy experiments.


Assuntos
Rim/efeitos da radiação , Método de Monte Carlo , Radioisótopos/farmacocinética , Radiometria/métodos , Baço/efeitos da radiação , Glândula Tireoide/efeitos da radiação , Animais , Carga Corporal (Radioterapia) , Transferência Linear de Energia , Camundongos , Camundongos Nus , Eficiência Biológica Relativa , Processamento de Sinais Assistido por Computador , Contagem Corporal Total
14.
Phys Med ; 41: 46-52, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28462867

RESUMO

PURPOSE: Commercial algorithms used in Radiotherapy include approximations that are generally acceptable. However their limits can be seen when confronted with small fields and low-density media. These conditions exist during the treatment of lung cancers with Stereotactic Body Radiation Therapy (SBRT) achieved with the "Deep Inspiration Breath Hold" (DIBH) technique. A Monte Carlo (MC) model of a linear accelerator was used to assess the performance of two algorithms (Varian Acuros and AAA) in these conditions. This model is validated using phantoms with different densities. Lastly, results for SBRT cases are compared to both Acuros and AAA. METHODS: A Varian TrueBeam linac was modeled using GATE/Geant4 and validated by comparing dose distributions for simple fields to measurements in water and in heterogeneous phantoms composed of PMMA and two types of cork (corresponding to lung densities during free-breathing and DIBH). Experimental measurements are also compared to AAA and Acuros. Finally, results of Acuros/AAA are compared to MC for a clinical case (SBRT during DIBH). RESULTS: Based on 1D gamma index comparisons with measurements in water, the TrueBeam model was validated (>97% of points passed this test). In heterogeneous phantoms, and in particular for small field sizes, very low density (0.12g.cm-3) and at the edge of the field, MC model was still in good agreement with measurements whilst AAA and Acuros showed discrepancies. With the patient CT, similar differences between MC and AAA/Acuros were observed for static fields but disappeared using an SBRT arc field. CONCLUSIONS: Our MC model is validated and limits of commercial algorithms are shown in very low densities.


Assuntos
Neoplasias Pulmonares/radioterapia , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Algoritmos , Suspensão da Respiração , Humanos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica
15.
Phys Med ; 42: 292-297, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28736285

RESUMO

Simulations of planar whole body acquisitions in therapeutic procedures are often extensively time-consuming and therefore rarely used. However, optimising tools and variance reduction techniques can be employed to overcome this problem. In this paper, a variety of features available in GATE are explored and their capabilities to reduce simulation time are evaluated. For this purpose, the male XCAT phantom was used as a virtual patient with 177Lu-DOTATATE pharmacokinetic for whole body planar acquisition simulations in a Siemens Symbia T2 model. Activity distribution was divided into 8 compartments that were simulated separately. GATE optimization techniques included reducing the amount of time spent in both voxel and detector tracking. Some acceleration techniques led to a decrease of CPU-time by a factor of 167, while image statistics were kept constant. In that context, the simulation of therapeutic procedure imaging would still require 46days on a single CPU, but this could be reduced to hours on a dedicated cluster.


Assuntos
Simulação por Computador , Octreotida/análogos & derivados , Compostos Organometálicos , Imagens de Fantasmas , Cintilografia/métodos , Compostos Radiofarmacêuticos , Imagem Corporal Total/métodos , Humanos , Cinética , Masculino , Método de Monte Carlo , Cintilografia/instrumentação , Imagem Corporal Total/instrumentação
16.
Phys Med Biol ; 51(3): 601-16, 2006 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-16424584

RESUMO

Dosimetric studies are necessary for all patients treated with targeted radiotherapy. In order to attain the precision required, we have developed Oedipe, a dosimetric tool based on the MCNPX Monte Carlo code. The anatomy of each patient is considered in the form of a voxel-based geometry created using computed tomography (CT) images or magnetic resonance imaging (MRI). Oedipe enables dosimetry studies to be carried out at the voxel scale. Validation of the results obtained by comparison with existing methods is complex because there are multiple sources of variation: calculation methods (different Monte Carlo codes, point kernel), patient representations (model or specific) and geometry definitions (mathematical or voxel-based). In this paper, we validate Oedipe by taking each of these parameters into account independently. Monte Carlo methodology requires long calculation times, particularly in the case of voxel-based geometries, and this is one of the limits of personalized dosimetric methods. However, our results show that the use of voxel-based geometry as opposed to a mathematically defined geometry decreases the calculation time two-fold, due to an optimization of the MCNPX2.5e code. It is therefore possible to envisage the use of Oedipe for personalized dosimetry in the clinical context of targeted radiotherapy.


Assuntos
Radiometria/métodos , Radioterapia/métodos , Simulação por Computador , Estudos de Avaliação como Assunto , Humanos , Imageamento por Ressonância Magnética , Modelos Anatômicos , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Software
17.
Phys Med ; 32(12): 1833-1840, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27773539

RESUMO

A new alternative set of elastic and inelastic cross sections has been added to the very low energy extension of the Geant4 Monte Carlo simulation toolkit, Geant4-DNA, for the simulation of electron interactions in liquid water. These cross sections have been obtained from the CPA100 Monte Carlo track structure code, which has been a reference in the microdosimetry community for many years. They are compared to the default Geant4-DNA cross sections and show better agreement with published data. In order to verify the correct implementation of the CPA100 cross section models in Geant4-DNA, simulations of the number of interactions and ranges were performed using Geant4-DNA with this new set of models, and the results were compared with corresponding results from the original CPA100 code. Good agreement is observed between the implementations, with relative differences lower than 1% regardless of the incident electron energy. Useful quantities related to the deposited energy at the scale of the cell or the organ of interest for internal dosimetry, like dose point kernels, are also calculated using these new physics models. They are compared with results obtained using the well-known Penelope Monte Carlo code.


Assuntos
DNA/química , Elétrons , Método de Monte Carlo , Fenômenos Físicos , Água/química
18.
Phys Med Biol ; 61(19): 6935-6952, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27617585

RESUMO

Current preclinical dosimetric models often fail to take account of the complex nature of absorbed dose distribution typical of in vitro clonogenic experiments in targeted radionuclide therapy. For this reason, clonogenic survival is often expressed as a function of added activity rather than the absorbed dose delivered to cells/cell nuclei. We designed a multi-cellular dosimetry model that takes into account the realistic distributions of cells in the Petri dish, for the establishment of survival curves as a function of the absorbed dose. General-purpose software tools were used for the generation of realistic, randomised 3D cell culture geometries based on experimentally determined parameters (cell size, cell density, cluster density, average cluster size, cell cumulated activity). A mixture of Monte Carlo and analytical approaches was implemented in order to achieve as accurate as possible results while reducing calculation time. The model was here applied to clonogenic survival experiments carried out to compare the efficacy of Betalutin®, a novel 177Lu-labelled antibody radionuclide conjugate for the treatment of non-Hodgkin lymphoma, to that of 177Lu-labelled CD20-specific (rituximab) and non-specific antibodies (Erbitux) on lymphocyte B cells. The 3D cellular model developed allowed a better understanding of the radiative and non-radiative processes associated with cellular death. Our approach is generic and can also be applied to other radiopharmaceuticals and cell distributions.


Assuntos
Antineoplásicos/uso terapêutico , Lutécio/uso terapêutico , Linfoma não Hodgkin/radioterapia , Modelos Biológicos , Compostos Radiofarmacêuticos/uso terapêutico , Rituximab/uso terapêutico , Antineoplásicos/farmacocinética , Humanos , Lutécio/farmacocinética , Linfoma não Hodgkin/metabolismo , Método de Monte Carlo , Radiometria/métodos , Compostos Radiofarmacêuticos/farmacocinética , Rituximab/farmacocinética , Software , Distribuição Tecidual , Células Tumorais Cultivadas
19.
Clin Cancer Res ; 5(10 Suppl): 3259s-3267s, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10541373

RESUMO

As small cell lung carcinoma (SCLC) is frequently a widespread disease at diagnosis, highly radiosensitive and often only partially responsive to chemotherapy, radioimmunotherapy (RIT) would appear to be a promising technique for treatment. We report the preliminary results of a Phase I/II trial of RIT in SCLC using a two-step method and a myeloablative protocol with circulating stem cells transplantation. Fourteen patients with proved SCLC relapse after chemotherapy were treated with RIT. They were first injected i.v. with a bispecific (anti-carcinoembryonic antigen/anti-diethylenetriaminepentaacetic acid) monoclonal antibody (20-80 mg in 100 ml of saline solution) and then 4 days later with di-(In-diethylenetriaminepentaacetic acid)-tyrosyl-lysine hapten labeled with 1.48-6.66 GBq (40-180 mCi) of I-131 and diluted in 100 ml of saline solution. In patients receiving 150 mCi or more, circulating stem cells were harvested before treatment and reinfused 10-15 days later. Treatment response was evaluated by CT and biochemical data during the month before and 1, 3, 6, and 12 months after treatment. All patients received the scheduled dose without immediate adverse reactions to bispecific antibody or 1-131 hapten. Toxicity was mainly hematological, with two cases of grade 2 leukopenia and three cases of grade 3 or 4 thrombopenia. Body scanning 8 days after injection of the radiolabeled hapten generally showed good uptake at the tumor sites. Estimated tumor dose was 2.6-32.2 cGy/mCi. Among the 12 patients evaluated to date, we have observed 9 progressions, 2 partial responses (one almost complete for 3 months), and 1 stabilization of more than 24 months. Efficiency and toxicity were dose-related. The maximal tolerable dose without hematological rescue was 150 mCi. These preliminary results are encouraging, and dose escalation is currently continuing to reach 300 mCi. RIT should prove to be an interesting therapeutic method for SCLC, although repeated injections and hematological rescue will probably be required, as well as combination with other treatment modalities.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígeno Carcinoembrionário/imunologia , Carcinoma de Células Pequenas/radioterapia , Haptenos/uso terapêutico , Radioisótopos do Iodo/uso terapêutico , Neoplasias Pulmonares/radioterapia , Ácido Pentético/imunologia , Radioimunoterapia , Idoso , Animais , Anticorpos Anti-Idiotípicos/sangue , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Dosagem Radioterapêutica
20.
Clin Cancer Res ; 5(10 Suppl): 3190s-3198s, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10541363

RESUMO

The toxicity and therapeutic efficacy of escalating doses of anti-carcinoembryonic antigen x anti-N alpha-(diethylenetriamine-N,N,N',N''-tetraacetic acid)-In bispecific monoclonal antibody (F6-734) and iodine 131-labeled bivalent hapten were determined in a Phase I/II trial. A total of 26 patients with recurrences of medullary thyroid cancer documented by imaging and a rise in serum thyrocalcitonin were enrolled. Twenty to 50 mg of F6-734 and 40-100 mCi of 131I-hapten were injected 4 days apart. Quantitative scintigraphy was performed after the second injection for dosimetry estimations in eight cases. Clinical, biological, and morphological follow-up was carried out for 1 year after treatment. The mean percentage of injected activity per gram of tumor at the time of maximum uptake was 0.08% (range, 0.003-0.26%). The tumor biological half-life ranged from 3 to 95 days, and tumor doses ranged from 2.91 to 184 cGy/mCi. The estimated tumor-to-nontumor dose ratios were 43.8 x 53.4, 29.6 x 35.3, 10.9 x 13.6, and 8.4 x 10.0 for total body, red marrow, liver, and kidney, respectively. Grade III/IV hematological toxicity was observed in seven patients, most of them with bone metastases. Among the 17 evaluable patients, 4 pain reliefs, 5 minor tumor responses, and 4 biological responses with decrease of thyrocalcitonin were observed. Nine patients developed human anti-mouse antibody. Dose-limiting toxicity was hematological, and maximum tolerated activity was 48 mCi/m2 in this group of patients, most of whom had suspected bone marrow involvement. The therapeutic responses observed in patients mainly with a small tumor burden are encouraging for the performance of a Phase II trial with minimal residual disease.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Carcinoma Medular/radioterapia , Haptenos/uso terapêutico , Radioisótopos do Iodo/uso terapêutico , Radioimunoterapia , Neoplasias da Glândula Tireoide/radioterapia , Adolescente , Adulto , Idoso , Anticorpos Anti-Idiotípicos/sangue , Anticorpos Biespecíficos/farmacocinética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radioimunoterapia/efeitos adversos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA