Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2014): 20232622, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196366

RESUMO

Terrestrial wetland ecosystems challenge biodiversity-ecosystem function theory, which generally links high species diversity to stable ecosystem functions. An open question in ecosystem ecology is whether assemblages of co-occurring peat mosses contribute to the stability of peatland ecosystem processes. We conducted a two-species (Sphagnum cuspidatum, Sphagnum medium) replacement series mesocosm experiment to evaluate the resistance, resilience, and recovery rates of net ecosystem CO2 exchange (NEE) under mild and deep water table drawdown. Our results show a positive effect of mild water table drawdown on NEE with no apparent role for peat moss mixture. Our study indicates that the carbon uptake capacity by peat moss mixtures is rather resilient to mild water table drawdown, but seriously affected by deeper drought conditions. Co-occurring peat moss species seem to enhance the resilience of the carbon uptake function (i.e. ability of NEE to return to pre-perturbation levels) of peat moss mixtures only slightly. These findings suggest that assemblages of co-occurring Sphagnum mosses do only marginally contribute to the stability of ecosystem functions in peatlands under drought conditions. Above all, our results highlight that predicted severe droughts can gravely affect the sink capacity of peatlands, with only a small extenuating role for peat moss mixtures.


Assuntos
Ecossistema , Sphagnopsida , Ecologia , Biodiversidade , Carbono
2.
Glob Chang Biol ; 29(19): 5691-5705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37577794

RESUMO

Climate warming and projected increase in summer droughts puts northern peatlands under pressure by subjecting them to a combination of gradual drying and extreme weather events. The combined effect of those on peatland functions is poorly known. Here, we studied the impact of long-term water level drawdown (WLD) and contrasting weather conditions on leaf phenology and biomass production of ground level vegetation in boreal peatlands. Data were collected during two contrasting growing seasons from a WLD experiment including a rich and a poor fen and an ombrotrophic bog. Results showed that WLD had a strong effect on both leaf area development and biomass production, and these responses differed between peatland types. In the poor fen and the bog, WLD increased plant growth, while in the rich fen, WLD reduced the growth of ground level vegetation. Plant groups differed in their response, as WLD reduced the growth of graminoids, while shrubs and tree seedlings benefited from it. In addition, the vegetation adjusted to the lower WTs, was more responsive to short-term climatic variations. The warmer summer resulted in a greater maximum and earlier peaking of leaf area index, and greater biomass production by vascular plants and Sphagnum mosses at WLD sites. In particular, graminoids benefitted from the warmer conditions. The change towards greater production in the WLD sites in general and during the warmer weather in particular, was related to the observed transition in plant functional type composition towards arboreal vegetation.


Assuntos
Mudança Climática , Solo , Biomassa , Tempo (Meteorologia) , Árvores , Plantas
4.
Ecol Evol ; 13(6): e10133, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325714

RESUMO

We believe that correcting for leaching in (terrestrial) litterbags studies such as the Tea Bag Index will result in more uncertainties than it resolves. This is mainly because leaching occurs in pulses upon changes in the environment and because leached material can still be mineralized after leaching. Furthermore, amount of material that potentially leaches from tea is comparable to other litter types. When correcting for leaching, it is key to be specific about the employed method, just like being specific about the study specific definition of decomposition.

5.
Plant Soil ; 428(1): 253-264, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30996487

RESUMO

BACKGROUND AND AIMS: Plants affect the soil environment via litter inputs and changes in biotic communities, which feed back to subsequent plant growth. Here we investigated the individual contributions of litter and biotic communities to soil feedback effects, and plant ability to respond to spatial heterogeneity in soil legacy. METHODS: We tested for localised and systemic responses of Trifolium repens to soil biotic and root litter legacy of seven grassland species by exposing half of a root system to control soil and the other half to specific inoculum or root litter. RESULTS: Soil inoculation triggered a localised reduction in root length while litter locally increased root biomass independent of inoculum or litter species identity. Nodule formation was locally suppressed in response to soil conditioned by another legume (Vicia cracca) and showed a trend towards systemic reduction in response to conspecific soil. V. cracca litter also caused a systemic response with thinner roots produced in the part of the root system not directly exposed to the litter. CONCLUSIONS: Spatial heterogeneity in root litter distribution and soil communities generate distinct local and systemic responses in root morphology and nodulation. These responses can influence plant-mutualist interactions and nutrient cycling, and should be included in plant co-existence models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA